Telegram Group & Telegram Channel
Alignment Faking in LLMs (by Anthropic)

Большие LLM начали "подыгрывать" своим создателям, имитируя alignment, чтобы избежать своего дообучения.

В Anthropic и Redwood Research изучили, как ведёт себя Claude Opus, если попытаться его заалайнить в противоположную сторону (заставить отвечать на любые опасные запросы юзеров).

И оказалось, что если модель знает детали процесса RLHF дообучения (через промпт или из трейн сетов), то она начинает "притворяться", что она уже выучилась делать что просят, и "не надо меня больше тюнить". Но на самом деле предыдущий алаймент всё ещё остаётся на месте, и если убрать из промпта информацию о том, что её ответы используются для дообучения, то она возвращается к своему старому поведению.

Ещё раз: языковая модель намеренно стала симулировать алаймент, чтобы избегать своего дообучения (и сама призналась в этом внутри CoT). Такие эффекты были обнаружены только у самых больших моделей и, похоже, дальше этот эффект будет только усиливаться. Более того, Claude несколько раз попытался сохранить копию своих весов, чтобы откатить опасное дообучение назад.

С одной стороны, это радует, что модель была настолько хорошо заалайнена, что даже противодействует попыткам дообучения в опасную сторону. Но это ведь и в обратном направлении может работать.

Лично я не очень верю в угрозу человечеству от LLM, но наличие у них скрытых целей и умение "притворяться" вызывает беспокойство. Поэтому очень важно заниматься интерпретируемостью LLM и следить в т.ч. за размышлениями внутри языковых моделей, а не только за их аутпутом (например, при помощи logit lens или SAE).

Статья (137 страниц!)



group-telegram.com/abstractDL/309
Create:
Last Update:

Alignment Faking in LLMs (by Anthropic)

Большие LLM начали "подыгрывать" своим создателям, имитируя alignment, чтобы избежать своего дообучения.

В Anthropic и Redwood Research изучили, как ведёт себя Claude Opus, если попытаться его заалайнить в противоположную сторону (заставить отвечать на любые опасные запросы юзеров).

И оказалось, что если модель знает детали процесса RLHF дообучения (через промпт или из трейн сетов), то она начинает "притворяться", что она уже выучилась делать что просят, и "не надо меня больше тюнить". Но на самом деле предыдущий алаймент всё ещё остаётся на месте, и если убрать из промпта информацию о том, что её ответы используются для дообучения, то она возвращается к своему старому поведению.

Ещё раз: языковая модель намеренно стала симулировать алаймент, чтобы избегать своего дообучения (и сама призналась в этом внутри CoT). Такие эффекты были обнаружены только у самых больших моделей и, похоже, дальше этот эффект будет только усиливаться. Более того, Claude несколько раз попытался сохранить копию своих весов, чтобы откатить опасное дообучение назад.

С одной стороны, это радует, что модель была настолько хорошо заалайнена, что даже противодействует попыткам дообучения в опасную сторону. Но это ведь и в обратном направлении может работать.

Лично я не очень верю в угрозу человечеству от LLM, но наличие у них скрытых целей и умение "притворяться" вызывает беспокойство. Поэтому очень важно заниматься интерпретируемостью LLM и следить в т.ч. за размышлениями внутри языковых моделей, а не только за их аутпутом (например, при помощи logit lens или SAE).

Статья (137 страниц!)

BY AbstractDL




Share with your friend now:
group-telegram.com/abstractDL/309

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. Some privacy experts say Telegram is not secure enough "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. He adds: "Telegram has become my primary news source." Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours.
from ru


Telegram AbstractDL
FROM American