Telegram Group & Telegram Channel
Для курса подготовки школьников к межнару решил попробовать собрать два соревнования не сам, а используя o1-pro. В обоих соревнованиях я хотел получить скрипт, который сгенерирует мне train, test, sample_submission, solution - все, что нужно, чтобы завести кегл соревнование. Процесс получился достаточно любопытным, поэтому я решил поделиться своими наблюдениями.

Первым я собирал соревнование на семинар по ML метрикам и константным решениям. Есть класс задач, где можно получить хорошее качество и без обучения моделей - обычно это относится к периодическим паттернам (прогноз погоды на пару месяцев вперед) или к задачам с огромным количеством категорий (прогноз CTR в google ads). На практике это редко заменяет ML модель, но может служить неплохой фичей.

У меня было хорошее понимание что я хочу получить, я постарался максимально ясно и коротко его объяснить, закинул в чатгпт и попросил его задать мне уточняющие вопросы (это оказалось хорошей идеей и сильно помогло 🐥). В итоге какой-то скрипт, который мне понравился, появился буквально в течении получаса, но вот потом пришлось очень много итерироваться, смотря на результат или читая код. Тут хорошей идеей было попросить напечатать качество моделей и порисовать графики, чтобы я мог проверить наличие закономерностей, которые хотел получить.

С некоторыми штуками у нас так и не получилось справиться - после 3-4 попыток объяснить ему, чего я хочу, приходилось лезть в код исправлять самому. Потом этот код закидывался обратно и с ним вполне получалось работать дальше. Тут пожалуй приведу два примера. Первый: когда я хотел получить некоторую закономерность, формулы которой я сам явно не понимал, додумать мою мысль у чатгпт не получалось. Второй: в какой-то момент был сгенерирован очень долгий и странный расчет статистического бейзлайна, который никак не получалось исправить с помощью наводящих вопросов, и в итоге я за несколько минут переписал его через один групбай. 🐼

Вывод тут хочется сделать такой, что у o1-pro хорошо получается выполнять задачи, которые хорошо и однозначно формулируются. Как будто чатгпт не хватало "умения" распознать возникающую проблему и задать правильный вопрос в нужное время: мне кажется, если бы это был не чатгпт, а какой-нибудь другой кеглер или млщик, то он бы сказал, что ничего не понял и нужно дообъяснить. (Думаю, мне тут самому стоило напомнить чатгпт, что она может задавать мне вопросы, если есть существенная неопределенность задачи).

Еще несколько раз встречалась ситуация, когда у чатгпт как будто не хватало "насмотренности". Например, когда я попросил его посчитать качество статистического прогноза, то он решил просто отфильтровать строчки, где прогноз был NaN 😅 Еще был такой забавный: когда я сказал, что качество бейзлайна слишком хорошее и попросил его ухудшить, чатгпт просто удалил часть колонок из датафрейма базовой модели 👌 конечно я имел в виду, что нужно сделать зависимость между данными и таргетом более случайной, данные ведь синтетические. Тут видно, что пытаясь удовлетворить запросу формально, был упущен важный контекст (это будет соревнование и участники в качестве бейзлайна ну уж точно догадаются отдать в катбуст все фичи).
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/aguschin_ai/106
Create:
Last Update:

Для курса подготовки школьников к межнару решил попробовать собрать два соревнования не сам, а используя o1-pro. В обоих соревнованиях я хотел получить скрипт, который сгенерирует мне train, test, sample_submission, solution - все, что нужно, чтобы завести кегл соревнование. Процесс получился достаточно любопытным, поэтому я решил поделиться своими наблюдениями.

Первым я собирал соревнование на семинар по ML метрикам и константным решениям. Есть класс задач, где можно получить хорошее качество и без обучения моделей - обычно это относится к периодическим паттернам (прогноз погоды на пару месяцев вперед) или к задачам с огромным количеством категорий (прогноз CTR в google ads). На практике это редко заменяет ML модель, но может служить неплохой фичей.

У меня было хорошее понимание что я хочу получить, я постарался максимально ясно и коротко его объяснить, закинул в чатгпт и попросил его задать мне уточняющие вопросы (это оказалось хорошей идеей и сильно помогло 🐥). В итоге какой-то скрипт, который мне понравился, появился буквально в течении получаса, но вот потом пришлось очень много итерироваться, смотря на результат или читая код. Тут хорошей идеей было попросить напечатать качество моделей и порисовать графики, чтобы я мог проверить наличие закономерностей, которые хотел получить.

С некоторыми штуками у нас так и не получилось справиться - после 3-4 попыток объяснить ему, чего я хочу, приходилось лезть в код исправлять самому. Потом этот код закидывался обратно и с ним вполне получалось работать дальше. Тут пожалуй приведу два примера. Первый: когда я хотел получить некоторую закономерность, формулы которой я сам явно не понимал, додумать мою мысль у чатгпт не получалось. Второй: в какой-то момент был сгенерирован очень долгий и странный расчет статистического бейзлайна, который никак не получалось исправить с помощью наводящих вопросов, и в итоге я за несколько минут переписал его через один групбай. 🐼

Вывод тут хочется сделать такой, что у o1-pro хорошо получается выполнять задачи, которые хорошо и однозначно формулируются. Как будто чатгпт не хватало "умения" распознать возникающую проблему и задать правильный вопрос в нужное время: мне кажется, если бы это был не чатгпт, а какой-нибудь другой кеглер или млщик, то он бы сказал, что ничего не понял и нужно дообъяснить. (Думаю, мне тут самому стоило напомнить чатгпт, что она может задавать мне вопросы, если есть существенная неопределенность задачи).

Еще несколько раз встречалась ситуация, когда у чатгпт как будто не хватало "насмотренности". Например, когда я попросил его посчитать качество статистического прогноза, то он решил просто отфильтровать строчки, где прогноз был NaN 😅 Еще был такой забавный: когда я сказал, что качество бейзлайна слишком хорошее и попросил его ухудшить, чатгпт просто удалил часть колонок из датафрейма базовой модели 👌 конечно я имел в виду, что нужно сделать зависимость между данными и таргетом более случайной, данные ведь синтетические. Тут видно, что пытаясь удовлетворить запросу формально, был упущен важный контекст (это будет соревнование и участники в качестве бейзлайна ну уж точно догадаются отдать в катбуст все фичи).

BY Жизнь и датка


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/aguschin_ai/106

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised.
from ru


Telegram Жизнь и датка
FROM American