Telegram Group & Telegram Channel
А вот и наша статья подоспела - Cache Me if You Can: Accelerating Diffusion Models through Block Caching

Как я уже упоминал, наша команда в Meta GenAI занимается ускорением диффузии. В этой статье мы ускоряем генерацию изображений до x1.8 раза без потери качества с помощью умного кеширования во время инференса.

Как?
Для генерации одной картинки обычно требуется сделать много прогонов через модель Unet, например 50 DDIM шагов. Мы тут подметили, что активации Spatial-Attention блоков довольно гладко меняются от шага к шагу, и паттерн их изменения не зависит от промпта. Естественно, мы подумали, почему бы не кешировать фичи тех блоков, которые меняются наиболее медленно и пересчитывать их только раз в несколько шагов. Понт в том, что львиная доля всех вычислений происходит именно в attention блоках, поэтому пропуская их вычисления хотя бы на некоторых шагах, мы сильно ускоряем генерацию.

Все блоки разные, и их активации меняются с разной скоростью. Поэтому мы построили графики изменений активаций для каждого блока (усреднили по 64 запросам) и использовали их чтобы автоматически найти когда и какие блоки можно кешировать, и как долго должен жить кеш для каждого из блоков.

Чтобы убрать мелкие артифакты после кеширования, мы дополнительно обучаем time-dependent scale и shift параметры для каждого выходнрго канала кешируемых блоков. Это помогает сгладить разницу распределений между "честно посчитанными" фичами и закеширвоанными.

В итоге, получили x1.5-1.8 ускорение, причем FID скор даже улучшился после применения кеширования. А результаты Human Eval показали, что при фиксированном времени генерации модель с кешированием выдает более качественные картинки чем бейзлайн.

На каких архитектурах тестировали:
- LDM 512x512 (та же архитектура как у SD 1.5, но натренированная нами внутри GenAI)
- Наша Emu 768x768 с 2.7B параметров.

То есть метод гибок и может подстраиваться под модели разных размеров, причем расписание кеширования разных блоков строится автоматически. Взлетит и на SDXL тоже.

Статья на Arxiv

@ai_newz



group-telegram.com/ai_newz/2330
Create:
Last Update:

А вот и наша статья подоспела - Cache Me if You Can: Accelerating Diffusion Models through Block Caching

Как я уже упоминал, наша команда в Meta GenAI занимается ускорением диффузии. В этой статье мы ускоряем генерацию изображений до x1.8 раза без потери качества с помощью умного кеширования во время инференса.

Как?
Для генерации одной картинки обычно требуется сделать много прогонов через модель Unet, например 50 DDIM шагов. Мы тут подметили, что активации Spatial-Attention блоков довольно гладко меняются от шага к шагу, и паттерн их изменения не зависит от промпта. Естественно, мы подумали, почему бы не кешировать фичи тех блоков, которые меняются наиболее медленно и пересчитывать их только раз в несколько шагов. Понт в том, что львиная доля всех вычислений происходит именно в attention блоках, поэтому пропуская их вычисления хотя бы на некоторых шагах, мы сильно ускоряем генерацию.

Все блоки разные, и их активации меняются с разной скоростью. Поэтому мы построили графики изменений активаций для каждого блока (усреднили по 64 запросам) и использовали их чтобы автоматически найти когда и какие блоки можно кешировать, и как долго должен жить кеш для каждого из блоков.

Чтобы убрать мелкие артифакты после кеширования, мы дополнительно обучаем time-dependent scale и shift параметры для каждого выходнрго канала кешируемых блоков. Это помогает сгладить разницу распределений между "честно посчитанными" фичами и закеширвоанными.

В итоге, получили x1.5-1.8 ускорение, причем FID скор даже улучшился после применения кеширования. А результаты Human Eval показали, что при фиксированном времени генерации модель с кешированием выдает более качественные картинки чем бейзлайн.

На каких архитектурах тестировали:
- LDM 512x512 (та же архитектура как у SD 1.5, но натренированная нами внутри GenAI)
- Наша Emu 768x768 с 2.7B параметров.

То есть метод гибок и может подстраиваться под модели разных размеров, причем расписание кеширования разных блоков строится автоматически. Взлетит и на SDXL тоже.

Статья на Arxiv

@ai_newz

BY эйай ньюз







Share with your friend now:
group-telegram.com/ai_newz/2330

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added.
from ru


Telegram эйай ньюз
FROM American