Telegram Group & Telegram Channel
⚡️Как ускорить диффузию ч1 - Model Distillation

Начинаю серию постов про основные методы для ускорения диффузионных моделей, т.к это один из моих главных научных интересов. В первой части поговорим про дистилляцию. Говорить будем в разрезе text2img, но многие из этих техник могут применяться и для видео.

Мы знаем, что диффузии из коробки требуется много прогонов по сети (шагов), чтобы сгенерить картинку во время инференса. Поэтому появился целый пласт работ, которые выдают вообще адовые ускорения. Ну такой вот примерно рецепт усредненный для дистиляции text2image моделей, потому что вариаций масса: берешь огромную модель учителя, которая генерит медленно, но качественно, и учишь студента предсказывать за 1-4 шага выходы учителя, полученные за много шагов. Магическим образом это работает. Но есть много нюансов, понять которые можно из следующих работ:

Model Distillation:
Guidance and Progressive Distillation - классика жанра, где впервые провели дистилляцию до 4 шагов.
Consistency Models - Более хитрая дистилляция, где на каждом шагу пытаемся предсказать конечный результат.
Improved Techniques for Training Consistency Models - то же самое, но с улучшенным расписанием шагов
SnapFusion - пруним архитектуру Unet и дистиллируем в меньшее число шагов с помощью Progressive Distillation.
InstaFlow - формулируем диффузии как линейный Flow Matching и дистиллируем в несколько раундов, пока не достигнем генерации за один шаг.
UfoGen - это Diffusion + GAN, где дискриминатор инициализируется UNet-ом диффузии.
Adversarial Diffusion Distillation (SDXL-Turbo) это дистилляция Diffusion + GAN, но дискриминатор тут основан на фичах DINOv2.
Latent Adversarial Diffusion Distillation (SD3 Turbo) — тоже самое только в latent фичах.
Imagine Flash — моя статья о дистилляции в 3 шага.

>> Читать часть 2

#ликбез
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2387
Create:
Last Update:

⚡️Как ускорить диффузию ч1 - Model Distillation

Начинаю серию постов про основные методы для ускорения диффузионных моделей, т.к это один из моих главных научных интересов. В первой части поговорим про дистилляцию. Говорить будем в разрезе text2img, но многие из этих техник могут применяться и для видео.

Мы знаем, что диффузии из коробки требуется много прогонов по сети (шагов), чтобы сгенерить картинку во время инференса. Поэтому появился целый пласт работ, которые выдают вообще адовые ускорения. Ну такой вот примерно рецепт усредненный для дистиляции text2image моделей, потому что вариаций масса: берешь огромную модель учителя, которая генерит медленно, но качественно, и учишь студента предсказывать за 1-4 шага выходы учителя, полученные за много шагов. Магическим образом это работает. Но есть много нюансов, понять которые можно из следующих работ:

Model Distillation:
Guidance and Progressive Distillation - классика жанра, где впервые провели дистилляцию до 4 шагов.
Consistency Models - Более хитрая дистилляция, где на каждом шагу пытаемся предсказать конечный результат.
Improved Techniques for Training Consistency Models - то же самое, но с улучшенным расписанием шагов
SnapFusion - пруним архитектуру Unet и дистиллируем в меньшее число шагов с помощью Progressive Distillation.
InstaFlow - формулируем диффузии как линейный Flow Matching и дистиллируем в несколько раундов, пока не достигнем генерации за один шаг.
UfoGen - это Diffusion + GAN, где дискриминатор инициализируется UNet-ом диффузии.
Adversarial Diffusion Distillation (SDXL-Turbo) это дистилляция Diffusion + GAN, но дискриминатор тут основан на фичах DINOv2.
Latent Adversarial Diffusion Distillation (SD3 Turbo) — тоже самое только в latent фичах.
Imagine Flash — моя статья о дистилляции в 3 шага.

>> Читать часть 2

#ликбез
@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2387

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site.
from ru


Telegram эйай ньюз
FROM American