Notice: file_put_contents(): Write of 12908 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
эйай ньюз | Telegram Webview: ai_newz/2640 -
Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
Microsoft выпустила Phi-3

Моделька интересная и довольно умная, есть поддержка 128к контекста, запускается на айфоне со скоростью в 12 токенов в секунду. Я не сразу запостил, потому что у неё подозрительно хорошие результаты бенчмарков: mini (3.8B на 3.3 триллионах токенов) версия модели тягается с LLaMa 3 8B (15 триллионов токенов), а medium - с Mistral 8x22B Instruct. По поводу моделей семейства давно ходят шутки из-за того что их (возможно) тренируют на бенчмарках. Однако авторы заявляют, что такие высокие метрики — следствие их датасета, который лучше всех учит модельку размышлять. Через трое суток после релиза весов я все ещё жду проверки этой модели на ChatBot Arena, так как доверия к бенчмаркам нет. [UPD: появились результаты на арене]

Предыдущие модели семейства Phi тренировали на синтетических данных, тут же, большая часть датасета - данные из интернета. Тренируют в две стадии: первая - тренировка на сильно отфильтрованных данных. На второй стадии её, как и прошлые модели, тренируют на синтетических данных, но добавляют ещё более отфильтрованную примесь данных из интернета.

Авторы пытаются отсеять данные которые LLM такого размера и так вряд ли выучит, например результаты конкретных спортивных матчей. Назвали они это Data Optimal Regime, но у него есть заметный минус: после 7B параметров качество почти не растёт, 14B моделька очень недалеко ушла от 7B модели. Тут может быть две интерпретации: первая – из датасета убрали всё, что не может понять 3B моделька (то есть что-то такое, только для LLM), вторая – модель выучила все ответы на бенчмарки, что были в датасете и насытилась. Из-за этого, хоть в пейпере речь идёт о моделях трёх размеров: mini (3.8B), small (7B) и medium (14B), пока что релизнули только самую маленькую.

--
На видео, демонстрации инференса в fp16 на M3 Max:  Вход - 131.917 tps, Генерация- 43.387 tps. Бегает шустро, но можно сделать ещё быстрее.

А вы что думаете про Phi-3?

Technical report
4k версия модели
128k версия
Тут можно початиться с моделькой

@ai_newz



group-telegram.com/ai_newz/2640
Create:
Last Update:

Microsoft выпустила Phi-3

Моделька интересная и довольно умная, есть поддержка 128к контекста, запускается на айфоне со скоростью в 12 токенов в секунду. Я не сразу запостил, потому что у неё подозрительно хорошие результаты бенчмарков: mini (3.8B на 3.3 триллионах токенов) версия модели тягается с LLaMa 3 8B (15 триллионов токенов), а medium - с Mistral 8x22B Instruct. По поводу моделей семейства давно ходят шутки из-за того что их (возможно) тренируют на бенчмарках. Однако авторы заявляют, что такие высокие метрики — следствие их датасета, который лучше всех учит модельку размышлять. Через трое суток после релиза весов я все ещё жду проверки этой модели на ChatBot Arena, так как доверия к бенчмаркам нет. [UPD: появились результаты на арене]

Предыдущие модели семейства Phi тренировали на синтетических данных, тут же, большая часть датасета - данные из интернета. Тренируют в две стадии: первая - тренировка на сильно отфильтрованных данных. На второй стадии её, как и прошлые модели, тренируют на синтетических данных, но добавляют ещё более отфильтрованную примесь данных из интернета.

Авторы пытаются отсеять данные которые LLM такого размера и так вряд ли выучит, например результаты конкретных спортивных матчей. Назвали они это Data Optimal Regime, но у него есть заметный минус: после 7B параметров качество почти не растёт, 14B моделька очень недалеко ушла от 7B модели. Тут может быть две интерпретации: первая – из датасета убрали всё, что не может понять 3B моделька (то есть что-то такое, только для LLM), вторая – модель выучила все ответы на бенчмарки, что были в датасете и насытилась. Из-за этого, хоть в пейпере речь идёт о моделях трёх размеров: mini (3.8B), small (7B) и medium (14B), пока что релизнули только самую маленькую.

--
На видео, демонстрации инференса в fp16 на M3 Max:  Вход - 131.917 tps, Генерация- 43.387 tps. Бегает шустро, но можно сделать ещё быстрее.

А вы что думаете про Phi-3?

Technical report
4k версия модели
128k версия
Тут можно початиться с моделькой

@ai_newz

BY эйай ньюз


Share with your friend now:
group-telegram.com/ai_newz/2640

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors.
from ru


Telegram эйай ньюз
FROM American