Notice: file_put_contents(): Write of 4103 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 12295 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
commit history | Telegram Webview: c0mmit/37 -
Telegram Group & Telegram Channel
Обзор исследований в AI и индустрии за 2022

Под конец года выходит много разных отчетов по индустриям. В октябре вышел State of AI Report 2022. На слайдах описаны основные события и статьи из мира AI за 2022 год. Плюс таких отчетов, что можно обзорно посмотреть на ситуацию в индустрии в разных срезах, а не читать каждую статью самому. Минус, что фокус твоего внимания полностью в руках авторов.

Про сам отчет.
Во-первых, респект авторам за то, что в начале есть краткий глоссарий с определениями и выжимка презентации.

Во-вторых, 80% всей презентации – это два раздела: research, в котором пересказы статей и industry, в котором приведены разные статистики вроде количества статей (стало больше) или объема инвестиций (стало меньше).

Мое внимание зацепили следующие моменты, которые можно объединить в идею повышения adoption разных AI инструментов. Про диффузионные модели и text2image генерацию картинок писать не буду, итак уже все слышали. Поэтому тут будет про LLM (Large Language Models = Большие Языковые модели)

1. Универсальность подхода языкового моделирования.
Подход, когда взяли трансформер, сформулировали self-supervised задачу (MLM=masked language modelling например) на последовательных данных, часто оказывается sota (лучшим) решением на многих задачах. От предсказания структуры белка до TTS (text2speech).

Почему – это круто? Потому что применяя один подход, можно создать много полезных инструментов. Может, когда-нибудь придем к “one model to rule them all”. Рабочие инструменты, тоже уже есть: Copilot активно использую, когда пишу код, экономит время.

2. Open source аналоги больших разработок. Года два назад я чаще слышал мнение про абсолютную монополию больших компаний в AI. Максимум, что можешь, это подрубаться по api к их продуктам. Однако, Open source сообщество имплементировали (реализовали), клонировали или доработали все основные модели (GPT3, Dalle, AlphaFold) быстрее, чем ожидалось.

Почему – это круто? Потому что open source доступен всем, значит можно строить больше разных инструментов. Ограничивающий фактор – это ресурсы, так как, у Bloom 175B, например, чисто для инференса весА даже в float16 весят 329GB. Но можно запускать распределенно на разных устройствах.

3. Текущие LLM (Large Language Models) недотренированы! OpenAi в 2020-ом сформулировали Scaling Law: если есть бюджет, то размер модели надо увеличивать быстрее, чем размер датасета. DeepMind переформулировали, что рост должен быть с одинаковым темпом. Дальше, думаю, будут работы про повышение качества данных и их подготовку. Не огромные модели проще и дешевле запускать. Опять же упрощает доставку моделей до конечного пользователя в виде инструмента.

Отдельно прикреплю слайд с итогами от самих авторов.



group-telegram.com/c0mmit/37
Create:
Last Update:

Обзор исследований в AI и индустрии за 2022

Под конец года выходит много разных отчетов по индустриям. В октябре вышел State of AI Report 2022. На слайдах описаны основные события и статьи из мира AI за 2022 год. Плюс таких отчетов, что можно обзорно посмотреть на ситуацию в индустрии в разных срезах, а не читать каждую статью самому. Минус, что фокус твоего внимания полностью в руках авторов.

Про сам отчет.
Во-первых, респект авторам за то, что в начале есть краткий глоссарий с определениями и выжимка презентации.

Во-вторых, 80% всей презентации – это два раздела: research, в котором пересказы статей и industry, в котором приведены разные статистики вроде количества статей (стало больше) или объема инвестиций (стало меньше).

Мое внимание зацепили следующие моменты, которые можно объединить в идею повышения adoption разных AI инструментов. Про диффузионные модели и text2image генерацию картинок писать не буду, итак уже все слышали. Поэтому тут будет про LLM (Large Language Models = Большие Языковые модели)

1. Универсальность подхода языкового моделирования.
Подход, когда взяли трансформер, сформулировали self-supervised задачу (MLM=masked language modelling например) на последовательных данных, часто оказывается sota (лучшим) решением на многих задачах. От предсказания структуры белка до TTS (text2speech).

Почему – это круто? Потому что применяя один подход, можно создать много полезных инструментов. Может, когда-нибудь придем к “one model to rule them all”. Рабочие инструменты, тоже уже есть: Copilot активно использую, когда пишу код, экономит время.

2. Open source аналоги больших разработок. Года два назад я чаще слышал мнение про абсолютную монополию больших компаний в AI. Максимум, что можешь, это подрубаться по api к их продуктам. Однако, Open source сообщество имплементировали (реализовали), клонировали или доработали все основные модели (GPT3, Dalle, AlphaFold) быстрее, чем ожидалось.

Почему – это круто? Потому что open source доступен всем, значит можно строить больше разных инструментов. Ограничивающий фактор – это ресурсы, так как, у Bloom 175B, например, чисто для инференса весА даже в float16 весят 329GB. Но можно запускать распределенно на разных устройствах.

3. Текущие LLM (Large Language Models) недотренированы! OpenAi в 2020-ом сформулировали Scaling Law: если есть бюджет, то размер модели надо увеличивать быстрее, чем размер датасета. DeepMind переформулировали, что рост должен быть с одинаковым темпом. Дальше, думаю, будут работы про повышение качества данных и их подготовку. Не огромные модели проще и дешевле запускать. Опять же упрощает доставку моделей до конечного пользователя в виде инструмента.

Отдельно прикреплю слайд с итогами от самих авторов.

BY commit history


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/c0mmit/37

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said.
from ru


Telegram commit history
FROM American