🎉 Apple на WWDC 2025: обновления для разработчиков и новый дизайн
📦 Что нового:
• On-device AI для всех
Apple открывает доступ к своим LLM-моделям прямо на устройствах. Теперь разработчики могут использовать Apple Intelligence в своих приложениях — без интернета и с полной защитой приватности.
• Xcode 26 + ChatGPT
Новая версия Xcode умеет генерировать код, помогать с тестами и исправлять баги с помощью встроенной интеграции ChatGPT и других LLM.
• Liquid Glass — новый дизайн Apple
Полупрозрачные и живые элементы интерфейса приходят во все системы: iOS 26, macOS Tahoe, iPadOS, watchOS, visionOS. Всё выглядит как будущее.
• Icon Composer для дизайнеров
Создавайте адаптивные иконки с эффектами бликов, размытием и прозрачностью. Никаких ручных svg больше не нужно.
• 250 000+ API и новые фреймворки
Улучшения в SwiftUI, Metal, RealityKit и множестве других SDK. Новые API для AI, AR, visionOS и работы с пространственными интерфейсами.
🧪 Бета уже доступна для участников Apple Developer Program.
Публичная бета — в июле. Финальный релиз — осенью.
💡 Это шаг в сторону мощных оффлайн-приложений с AI, нового визуального языка и реального удобства разработки.
https://www.apple.com/newsroom/2025/06/apple-supercharges-its-tools-and-technologies-for-developers/
@data_analysis_ml
📦 Что нового:
• On-device AI для всех
Apple открывает доступ к своим LLM-моделям прямо на устройствах. Теперь разработчики могут использовать Apple Intelligence в своих приложениях — без интернета и с полной защитой приватности.
• Xcode 26 + ChatGPT
Новая версия Xcode умеет генерировать код, помогать с тестами и исправлять баги с помощью встроенной интеграции ChatGPT и других LLM.
• Liquid Glass — новый дизайн Apple
Полупрозрачные и живые элементы интерфейса приходят во все системы: iOS 26, macOS Tahoe, iPadOS, watchOS, visionOS. Всё выглядит как будущее.
• Icon Composer для дизайнеров
Создавайте адаптивные иконки с эффектами бликов, размытием и прозрачностью. Никаких ручных svg больше не нужно.
• 250 000+ API и новые фреймворки
Улучшения в SwiftUI, Metal, RealityKit и множестве других SDK. Новые API для AI, AR, visionOS и работы с пространственными интерфейсами.
🧪 Бета уже доступна для участников Apple Developer Program.
Публичная бета — в июле. Финальный релиз — осенью.
💡 Это шаг в сторону мощных оффлайн-приложений с AI, нового визуального языка и реального удобства разработки.
https://www.apple.com/newsroom/2025/06/apple-supercharges-its-tools-and-technologies-for-developers/
@data_analysis_ml
🧠 NVIDIA выпустила *Nemotron-Personas* — 100 000 синтетических персон на Hugging Face!
🔓 Открытый датасет, сгенерированный нейросетью, но основанный на *реальных распределениях* пользователей. Что это даёт:
• 🧩 Больше *разнообразия* в данных
• 🛡 Снижение *предвзятости* моделей
• 🧠 Защита от *model collapse* при масштабном обучении
📦 Подходит для тестирования, дообучения и анализа LLM в сценариях с разными типами людей: по мотивации, профессии, эмоциям, взглядам и пр.
🔗 Датасет уже доступен на Hugging Face:
→ https://huggingface.co/datasets/NVIDIA/nemotron-personas
@data_analysis_ml
🔓 Открытый датасет, сгенерированный нейросетью, но основанный на *реальных распределениях* пользователей. Что это даёт:
• 🧩 Больше *разнообразия* в данных
• 🛡 Снижение *предвзятости* моделей
• 🧠 Защита от *model collapse* при масштабном обучении
📦 Подходит для тестирования, дообучения и анализа LLM в сценариях с разными типами людей: по мотивации, профессии, эмоциям, взглядам и пр.
🔗 Датасет уже доступен на Hugging Face:
NVIDIA Nemotron-Personas
→ https://huggingface.co/datasets/NVIDIA/nemotron-personas
@data_analysis_ml
🧠 Cartridges: как ускорить LLM в 26 раз без потери качества
Что, если вместо того, чтобы каждый раз загонять в контекст LLM весь репозиторий, мы предварительно обучим мини-контекст — и будем просто вставлять его при генерации?
🔍 Это и есть идея Cartridges — небольшой KV-кэш, обученный заранее с помощью метода self-study (обучение во время инференса).
📦 Репозиторий: содержит код для тренировки "картриджа" — легкого представления большого текстового дампа (например, всей кодовой базы), которое вставляется в LLM как контекст.
📉 Проблема:
• Если вставлять много текста в LLM, KV-кэш раздувается, скорость падает, стоимость растёт
🚀 Решение:
• Обучаем маленький KV-кэш для документации или репо
• Используем его как "сжатый контекст" при генерации
📈 Результаты:
• До 26× ускорения
• Качество ответов сохраняется
• Простая реализация и универсальный подход
📖 Подробнее в статье: *Cartridges: Lightweight and general-purpose long context representations via self-study*
📎 Идея простая, но мощная: пусть LLM "запоминает" ваш проект заранее — и работает с ним быстро, как с привычным знанием.
▪ Github
Что, если вместо того, чтобы каждый раз загонять в контекст LLM весь репозиторий, мы предварительно обучим мини-контекст — и будем просто вставлять его при генерации?
🔍 Это и есть идея Cartridges — небольшой KV-кэш, обученный заранее с помощью метода self-study (обучение во время инференса).
📦 Репозиторий: содержит код для тренировки "картриджа" — легкого представления большого текстового дампа (например, всей кодовой базы), которое вставляется в LLM как контекст.
📉 Проблема:
• Если вставлять много текста в LLM, KV-кэш раздувается, скорость падает, стоимость растёт
🚀 Решение:
• Обучаем маленький KV-кэш для документации или репо
• Используем его как "сжатый контекст" при генерации
📈 Результаты:
• До 26× ускорения
• Качество ответов сохраняется
• Простая реализация и универсальный подход
📖 Подробнее в статье: *Cartridges: Lightweight and general-purpose long context representations via self-study*
git clone https://github.com/HazyResearch/cartridges && cd cartridges
pip install uv
uv pip install -e .
📎 Идея простая, но мощная: пусть LLM "запоминает" ваш проект заранее — и работает с ним быстро, как с привычным знанием.
▪ Github
Forwarded from Machinelearning
Magistral — первая модель рассуждений от Mistral AI. Она сочетает глубокую логическую обработку с возможностью отслеживать каждый шаг её «мышления».
Модель получила поддержку 8 языков, включая русский и выпущена в 2 вариантах:
Внутри Magistral работает в режиме рассуждений, разбивая задачи на цепочки логических шагов, а Flash Answers ускоряет вывод в 10 раз по сравнению с конкурентами. Для интеграции в рабочие процессы модель умеет взаимодействовать с внешними инструментами (API или базами данных).
В тестах Magistral Medium показал 73,6% точности на задачах AIME2024, демонстрируя силу в физических симуляциях и математических расчетах.
Для разработчиков доступны версии на Hugging Face, AWS и IBM WatsonX, а в будущем — на Azure и Google Cloud. Демо Magistral доступно в интерфейсе Le Chat или по API в La Plateforme.
@ai_machinelearning_big_data
#AI #ML #LLM #Magistral #MistralAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 NVIDIA представила гигантский синтетический датасет для беспилотных автомобилей!
🔥 Что внутри?
▪ 81,802 синтетических видео с разнообразными сценариями:
— Городские/шоссейные дороги
— Экстремальные погодные условия (дождь, снег, туман)
— Редкие ситуации (аварии, нестандартные ПДД)
Мультисенсорные данные:
— Камеры, лидары, радары
— Разметка объектов (пешеходы, машины, знаки)
▪Dataset: https://huggingface.co/datasets/nvidia/PhysicalAI-Autonomous-Vehicle-Cosmos-Drive-Dreams
▪ Project Page: https://research.nvidia.com/labs/toronto-ai/cosmos_drive_dreams/
@data_analysis_ml
🔥 Что внутри?
▪ 81,802 синтетических видео с разнообразными сценариями:
— Городские/шоссейные дороги
— Экстремальные погодные условия (дождь, снег, туман)
— Редкие ситуации (аварии, нестандартные ПДД)
Мультисенсорные данные:
— Камеры, лидары, радары
— Разметка объектов (пешеходы, машины, знаки)
▪Dataset: https://huggingface.co/datasets/nvidia/PhysicalAI-Autonomous-Vehicle-Cosmos-Drive-Dreams
▪ Project Page: https://research.nvidia.com/labs/toronto-ai/cosmos_drive_dreams/
@data_analysis_ml
🧠 16 июня все самое важное в мире технологий ищите в Санкт-Петербурге!
В ТехноХабе Сбера состоится большая сессия в рамках серии мероприятий международной конференции AI Journey.
Именно здесь соберутся лидеры AI-индустрии из разных стран, чтобы обсудить реальные кейсы внедрения AI, архитектуры нового поколения, крутой апгрейд нейронки GigaChat, самое свежее в исследованиях GenAI и то, что уже завтра станет новым стандартом!
📌 Подключайтесь к трансляции, чтобы не отставать от будущего.
В ТехноХабе Сбера состоится большая сессия в рамках серии мероприятий международной конференции AI Journey.
Именно здесь соберутся лидеры AI-индустрии из разных стран, чтобы обсудить реальные кейсы внедрения AI, архитектуры нового поколения, крутой апгрейд нейронки GigaChat, самое свежее в исследованиях GenAI и то, что уже завтра станет новым стандартом!
📌 Подключайтесь к трансляции, чтобы не отставать от будущего.
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🔥 Manus Chat Mode — бесплатно и без ограничений для всех.
💬 Работает супер быстро прямо в чате.
🚀 Так же доступен Agent Mode с расширенными возможностями.
От простых вопросов до сложных задач — всё в одном окне : https://manus.im/
@ai_machinelearning_big_data
#news #ai #ml #manus
💬 Работает супер быстро прямо в чате.
🚀 Так же доступен Agent Mode с расширенными возможностями.
От простых вопросов до сложных задач — всё в одном окне : https://manus.im/
@ai_machinelearning_big_data
#news #ai #ml #manus
🎉 cuOpt от NVIDIA стал open source!
Теперь можно легко ускорять задачи оптимизации —
🔸 линейное программирование (LP)
🔸 целочисленные задачи (MIP)
🔸 маршрутизацию транспорта (VRP)
— с помощью GPU, почти не меняя код.
💡 Работает с Python, REST API и CLI
💡 Поддерживает PuLP и AMPL
💡 Запускается локально или в облаке
💡 Настраивается за пару минут
📈 Результат — решения почти в реальном времени, даже для сложных задач.
👉 Попробуй
Теперь можно легко ускорять задачи оптимизации —
🔸 линейное программирование (LP)
🔸 целочисленные задачи (MIP)
🔸 маршрутизацию транспорта (VRP)
— с помощью GPU, почти не меняя код.
💡 Работает с Python, REST API и CLI
💡 Поддерживает PuLP и AMPL
💡 Запускается локально или в облаке
💡 Настраивается за пару минут
pip install --extra-index-url=https://pypi.nvidia.com cuopt-server-cu12==25.5.* cuopt-sh==25.5.*
📈 Результат — решения почти в реальном времени, даже для сложных задач.
👉 Попробуй
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Text-to-LoRA — адаптеры LoRA по описанию задачи на естественном языке
Text-to-LoRA (T2L) — это гиперсеть, которая генерирует адаптер LoRA для LLM,
исходя только из текстового описания задачи. Без данных. Без обучения. Просто промпт → LoRA.
💡 Как работает:
▪️ Метаобученная гиперсеть принимает описание задачи
▪️ Генерирует task-specific LoRA в один шаг
▪️ Поддерживает сотни известных LoRA
▪️ Может обобщать на новые задачи
🚀 Почему это важно:
Традиционно адаптация LLM требует:
- большого датасета
- тонкой настройки
- вычислительных затрат
Text-to-LoRA делает то же самое в один шаг, просто по тексту. Это снижает технический порог и делает настройку доступной даже без ML-экспертизы.
🧬 Вдохновлено биологией:
Как зрение человека адаптируется к свету без обучения,
так и LLM может адаптироваться к задаче по описанию — через T2L.
📌 Новый шаг к адаптивным и доступным языковым системам.
📍 Представлено на #ICML2025
📄 Paper: https://arxiv.org/abs/2506.06105
💻 Code: https://github.com/SakanaAI/Text-to-Lora
@data_analysis_ml
Text-to-LoRA (T2L) — это гиперсеть, которая генерирует адаптер LoRA для LLM,
исходя только из текстового описания задачи. Без данных. Без обучения. Просто промпт → LoRA.
💡 Как работает:
▪️ Метаобученная гиперсеть принимает описание задачи
▪️ Генерирует task-specific LoRA в один шаг
▪️ Поддерживает сотни известных LoRA
▪️ Может обобщать на новые задачи
🚀 Почему это важно:
Традиционно адаптация LLM требует:
- большого датасета
- тонкой настройки
- вычислительных затрат
Text-to-LoRA делает то же самое в один шаг, просто по тексту. Это снижает технический порог и делает настройку доступной даже без ML-экспертизы.
🧬 Вдохновлено биологией:
Как зрение человека адаптируется к свету без обучения,
так и LLM может адаптироваться к задаче по описанию — через T2L.
📌 Новый шаг к адаптивным и доступным языковым системам.
📍 Представлено на #ICML2025
📄 Paper: https://arxiv.org/abs/2506.06105
💻 Code: https://github.com/SakanaAI/Text-to-Lora
@data_analysis_ml
🚀 DiffusionRenderer (Cosmos): Neural Inverse and Forward Rendering with Video Diffusion Models
Cosmos DiffusionRenderer — это современный фреймворк для нейросетевого de-lighting и re-lighting видео и изображений.
Новый релиз даёт качественный скачок по сравнению с предыдущей версией: ещё более чистое удаление и добавление освещения благодаря архитектуре NVIDIA Cosmos и улучшенному пайплайну обработки данных.
🔧 Минимальные требования:
• Python 3.10
• NVIDIA GPU с минимум 16 ГБ VRAM (рекомендуется ≥24 ГБ)
• NVIDIA драйверы и CUDA 12.0+
• Свободно ≥70 ГБ на диске
Проект протестирован на Ubuntu 20.04 и видеокартах NVIDIA A100/A5000.
https://github.com/nv-tlabs/cosmos1-diffusion-renderer
@data_analysis_ml
Cosmos DiffusionRenderer — это современный фреймворк для нейросетевого de-lighting и re-lighting видео и изображений.
Новый релиз даёт качественный скачок по сравнению с предыдущей версией: ещё более чистое удаление и добавление освещения благодаря архитектуре NVIDIA Cosmos и улучшенному пайплайну обработки данных.
🔧 Минимальные требования:
• Python 3.10
• NVIDIA GPU с минимум 16 ГБ VRAM (рекомендуется ≥24 ГБ)
• NVIDIA драйверы и CUDA 12.0+
• Свободно ≥70 ГБ на диске
Проект протестирован на Ubuntu 20.04 и видеокартах NVIDIA A100/A5000.
https://github.com/nv-tlabs/cosmos1-diffusion-renderer
@data_analysis_ml
🔥 Успех в IT = скорость + знания + окружение
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: www.group-telegram.com/ai_machinelearning_big_data
Python: www.group-telegram.com/python_job_interview
Linux: www.group-telegram.com/linuxacademiya
Собеседования DS: www.group-telegram.com/machinelearning_interview
C++ www.group-telegram.com/cpluspluc
Docker: www.group-telegram.com/DevopsDocker
Хакинг: www.group-telegram.com/linuxkalii
Devops: www.group-telegram.com/DevOPSitsec
Data Science: www.group-telegram.com/machinelearning_ru
Javascript: www.group-telegram.com/javascriptv
C#: www.group-telegram.com/csharp_ci
Java: www.group-telegram.com/javatg
Базы данных: www.group-telegram.com/sqlhub
Python собеседования: www.group-telegram.com/python_job_interview
Мобильная разработка: www.group-telegram.com/mobdevelop
Golang: www.group-telegram.com/Golang_google
React: www.group-telegram.com/react_tg
Rust: www.group-telegram.com/rust_code
ИИ: www.group-telegram.com/vistehno
PHP: www.group-telegram.com/phpshka
Android: www.group-telegram.com/android_its
Frontend: www.group-telegram.com/front
Big Data: www.group-telegram.com/bigdatai
МАТЕМАТИКА: www.group-telegram.com/data_math
Kubernets: www.group-telegram.com/kubernetc
Разработка игр: https://www.group-telegram.com/gamedev
Haskell: www.group-telegram.com/haskell_tg
Физика: www.group-telegram.com/fizmat
💼 Папка с вакансиями: www.group-telegram.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.group-telegram.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.group-telegram.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.group-telegram.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.group-telegram.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.group-telegram.com/memes_prog
🇬🇧Английский: www.group-telegram.com/english_forprogrammers
🧠ИИ: www.group-telegram.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.group-telegram.com/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: www.group-telegram.com/ai_machinelearning_big_data
Python: www.group-telegram.com/python_job_interview
Linux: www.group-telegram.com/linuxacademiya
Собеседования DS: www.group-telegram.com/machinelearning_interview
C++ www.group-telegram.com/cpluspluc
Docker: www.group-telegram.com/DevopsDocker
Хакинг: www.group-telegram.com/linuxkalii
Devops: www.group-telegram.com/DevOPSitsec
Data Science: www.group-telegram.com/machinelearning_ru
Javascript: www.group-telegram.com/javascriptv
C#: www.group-telegram.com/csharp_ci
Java: www.group-telegram.com/javatg
Базы данных: www.group-telegram.com/sqlhub
Python собеседования: www.group-telegram.com/python_job_interview
Мобильная разработка: www.group-telegram.com/mobdevelop
Golang: www.group-telegram.com/Golang_google
React: www.group-telegram.com/react_tg
Rust: www.group-telegram.com/rust_code
ИИ: www.group-telegram.com/vistehno
PHP: www.group-telegram.com/phpshka
Android: www.group-telegram.com/android_its
Frontend: www.group-telegram.com/front
Big Data: www.group-telegram.com/bigdatai
МАТЕМАТИКА: www.group-telegram.com/data_math
Kubernets: www.group-telegram.com/kubernetc
Разработка игр: https://www.group-telegram.com/gamedev
Haskell: www.group-telegram.com/haskell_tg
Физика: www.group-telegram.com/fizmat
💼 Папка с вакансиями: www.group-telegram.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.group-telegram.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.group-telegram.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.group-telegram.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.group-telegram.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.group-telegram.com/memes_prog
🇬🇧Английский: www.group-telegram.com/english_forprogrammers
🧠ИИ: www.group-telegram.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.group-telegram.com/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
🔥 AMD возвращается — и бросает вызов NVIDIA
Конец эпохи дефицита GPU?
На конференции Advancing AI AMD представила новые чипы MI350 и анонсировала серию MI400.
💥 MI350X:
• В 35 раз выше производительность инференса, чем у MI300
• На 40% энергоэффективнее, чем NVIDIA Blackwell
• Новый сервер Helios — до 72 чипов на стойку (ответ NVL72 от NVIDIA)
💬 Сэм Альтман (OpenAI) подтвердил партнёрство и участие в проектировании MI450
🧠 Microsoft, Meta, Oracle, xAI — уже на борту
🔓 AMD делает ставку на открытые стандарты (в отличие от CUDA)
♻️ Цель — 20-кратный рост энергоэффективности дата-центров к 2030
⚙️ AMD впервые всерьёз конкурирует с NVIDIA
Ставки: цена, открытость и масштабируемость.
MI350X выглядит как серьёзный конкурент Blackwell, а поддержка MI450 со стороны Альтмана — это далеко не пустой жест.
Если AMD продолжит продвигать открытые стандарты и энергоэффективность, мы наконец-то можем увидеть борьбу за рынок с NVIDIA на рынке GPU.
@data_analysis_ml
Конец эпохи дефицита GPU?
На конференции Advancing AI AMD представила новые чипы MI350 и анонсировала серию MI400.
💥 MI350X:
• В 35 раз выше производительность инференса, чем у MI300
• На 40% энергоэффективнее, чем NVIDIA Blackwell
• Новый сервер Helios — до 72 чипов на стойку (ответ NVL72 от NVIDIA)
💬 Сэм Альтман (OpenAI) подтвердил партнёрство и участие в проектировании MI450
🧠 Microsoft, Meta, Oracle, xAI — уже на борту
🔓 AMD делает ставку на открытые стандарты (в отличие от CUDA)
♻️ Цель — 20-кратный рост энергоэффективности дата-центров к 2030
⚙️ AMD впервые всерьёз конкурирует с NVIDIA
Ставки: цена, открытость и масштабируемость.
MI350X выглядит как серьёзный конкурент Blackwell, а поддержка MI450 со стороны Альтмана — это далеко не пустой жест.
Если AMD продолжит продвигать открытые стандарты и энергоэффективность, мы наконец-то можем увидеть борьбу за рынок с NVIDIA на рынке GPU.
@data_analysis_ml