Telegram Group & Telegram Channel
У Google вышла крутая статья про новую архитектуру Titan, которая может победить проблему забывания в трансформерах

Традиционные трансформеры очень прожорливы. Архитектура масштабируется квадратично по мере увеличения длины последовательности. Это приводит к проблеме невозможности увеличения контекстного окна и так называемому забыванию, потому что трансформеры также часто склонны аллоцировать внимание на нерелевантный контекст и, чем он больше, тем больше такая накапливаемая ошибка и степень забывчивости модели.

В Titan же подход к памяти немного иной: помимо краткосрочной памяти attention исследователи добавили в архитектуру долгосрочную память (тут вы, возможно, поймали флешбек на LSTM, и не зря). То есть у нас есть некоторый core – стандартное внимание с ограниченным окном, и модуль, который хранит важную информацию из "далекого прошлого". Чтобы решать, какую информацию запоминать, в нем используется метрика сюрприза (чем "неожиданнее" новые данные для модели, тем важнее их запомнить) + есть коэффициент затухания. Все эффективно параллелится.

При этом в статье показали аж три варианта соединить текущее внимание с долгосрочной памятью:

Memory as Context: долгосрочная память используется как контекст для текущего внимания.
Memory as Gating: здесь прямо максимальный мэтч с LSTM, тот же механизм гейтов
Memory as Layer: самый простой вариант, вся память соединена как слой в сетке

MAC оказался лучше всего по перплексии, а MAL чуть быстрее, но теряет в эффективности. В целом такая архитектура может легким движением руки масштабироваться до контекста в 2+ миллиона токенов, сохраняя стабильную точность (трансформеры начинают обычно фейлить уже после отметки 4096). Очень крутая работа получилась у Google, в общем.

Полный текст статьи здесь

P.S. Очень подробный и понятный разбор архитектуры LSTM от нас можно почитать здесь, а вот тут лежит наша большая статья про другие архитектуры-альтернативы трансформеру
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/data_secrets/5900
Create:
Last Update:

У Google вышла крутая статья про новую архитектуру Titan, которая может победить проблему забывания в трансформерах

Традиционные трансформеры очень прожорливы. Архитектура масштабируется квадратично по мере увеличения длины последовательности. Это приводит к проблеме невозможности увеличения контекстного окна и так называемому забыванию, потому что трансформеры также часто склонны аллоцировать внимание на нерелевантный контекст и, чем он больше, тем больше такая накапливаемая ошибка и степень забывчивости модели.

В Titan же подход к памяти немного иной: помимо краткосрочной памяти attention исследователи добавили в архитектуру долгосрочную память (тут вы, возможно, поймали флешбек на LSTM, и не зря). То есть у нас есть некоторый core – стандартное внимание с ограниченным окном, и модуль, который хранит важную информацию из "далекого прошлого". Чтобы решать, какую информацию запоминать, в нем используется метрика сюрприза (чем "неожиданнее" новые данные для модели, тем важнее их запомнить) + есть коэффициент затухания. Все эффективно параллелится.

При этом в статье показали аж три варианта соединить текущее внимание с долгосрочной памятью:

Memory as Context: долгосрочная память используется как контекст для текущего внимания.
Memory as Gating: здесь прямо максимальный мэтч с LSTM, тот же механизм гейтов
Memory as Layer: самый простой вариант, вся память соединена как слой в сетке

MAC оказался лучше всего по перплексии, а MAL чуть быстрее, но теряет в эффективности. В целом такая архитектура может легким движением руки масштабироваться до контекста в 2+ миллиона токенов, сохраняя стабильную точность (трансформеры начинают обычно фейлить уже после отметки 4096). Очень крутая работа получилась у Google, в общем.

Полный текст статьи здесь

P.S. Очень подробный и понятный разбор архитектуры LSTM от нас можно почитать здесь, а вот тут лежит наша большая статья про другие архитектуры-альтернативы трансформеру

BY Data Secrets











Share with your friend now:
group-telegram.com/data_secrets/5900

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read."
from ru


Telegram Data Secrets
FROM American