Telegram Group & Telegram Channel
Сегодня хочется порассуждать вслух, куда инвестировать свои силы в контексте этих ваших больших языковых моделей. В больших компаниях типа гугла всегда есть много точек входа в базовый продукт, и всегда можно поработать над тем, что важно лично тебе в текущий момент. 😛

Всего мыслей получилось три, что является олимпийским рекордом для LLM-рисёрчера. 🤤

Мысль первая: мне кажется, что нас ждёт гонка вооружений в моделях размером до трёх миллиардов параметров. Apple Intelligence питает LLMка с 3B параметров, но на рынке андроид-телефонов много откровенно слабых моделей, так что, скорее всего, гуглу придётся заталкивать в телефоны что-то поменьше. 👥 Из последних релизов наши друзья из Alibaba выпустили Qwen 2 в размерах 0.5B и 1.5B – достаточно, чтобы запускать на не самых продвинутых телефонах. Ещё интересно, кто сможет первым выкатить приватную тренировку LoRA-адаптеров прямо на устройстве – это должно сильно поднять качество для текстинга.

Мысль вторая: в категории средних моделей – скажем, до 100 миллиардов параметров, начинается жёсткая конкуренция за стоимость доступа по API. Основной юзкейс в этой области – это всякие ии-ассистены и агенты, которые должны совсем вымораживать при общении. Здесь очень важен пост-тренинг; хоть все и хают неприлично высокие результаты GPT-4o и 4o mini, нормальное следование инструкциям и приятные глазу ответы 🥹 – то, что нужно для этих ваших бизнесов.

Мысль третья: специфические модели для программирования. Тут пока нишу безоговорочно занял DeepSeek Coder v2. Я пока не очень понимаю, где тут деньги для бизнеса – программисты любят платить разве что за подержанный матрац; с другой стороны, говорят, что умение программировать – это почти что заветный reasoning, а там и до AGI рукой подать. Опять же, мне кажется, что в целом после претрейна модели обладают достаточными знаниями, и проблема в кодинг-LLMках заключается в посттренинге – например, Gemini 1.5 Pro поднялся на livebench в категории кодинга на 9% – это почти разница между 4o и 3.5 Sonnet. 📈

При всём этом, забывать о больших моделях я не собираюсь. Хоть LLM-пухляши и тренируются долго 🥁, вау-эффекта от моделей поменьше ждать пока не приходится. На всякий случай – мой пост – это не анонс анонса и не слив, как любят делать наши открытые ИИ-друзья 🪖. Результаты работы, особенно в претрейне, видны публично через месяцы. Так что запасаемся терпением вместе. 😮‍💨

Кстати пока ждём, напомню, что у нашего Gemini 1.5 Flash бесплатно можно сделать 1500 бесплатных запросов в день с запросами до миллиона токенов – у OpenAI эквивалентная модель GPT-4o-mini обойдётся вам в ~$25 ежедневно. На сдачу вы теперь можете поставить мне блестящую звёздочку под постом, а я вам взамен обещаю не использовать их ни на что полезное. 🤑
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/189
Create:
Last Update:

Сегодня хочется порассуждать вслух, куда инвестировать свои силы в контексте этих ваших больших языковых моделей. В больших компаниях типа гугла всегда есть много точек входа в базовый продукт, и всегда можно поработать над тем, что важно лично тебе в текущий момент. 😛

Всего мыслей получилось три, что является олимпийским рекордом для LLM-рисёрчера. 🤤

Мысль первая: мне кажется, что нас ждёт гонка вооружений в моделях размером до трёх миллиардов параметров. Apple Intelligence питает LLMка с 3B параметров, но на рынке андроид-телефонов много откровенно слабых моделей, так что, скорее всего, гуглу придётся заталкивать в телефоны что-то поменьше. 👥 Из последних релизов наши друзья из Alibaba выпустили Qwen 2 в размерах 0.5B и 1.5B – достаточно, чтобы запускать на не самых продвинутых телефонах. Ещё интересно, кто сможет первым выкатить приватную тренировку LoRA-адаптеров прямо на устройстве – это должно сильно поднять качество для текстинга.

Мысль вторая: в категории средних моделей – скажем, до 100 миллиардов параметров, начинается жёсткая конкуренция за стоимость доступа по API. Основной юзкейс в этой области – это всякие ии-ассистены и агенты, которые должны совсем вымораживать при общении. Здесь очень важен пост-тренинг; хоть все и хают неприлично высокие результаты GPT-4o и 4o mini, нормальное следование инструкциям и приятные глазу ответы 🥹 – то, что нужно для этих ваших бизнесов.

Мысль третья: специфические модели для программирования. Тут пока нишу безоговорочно занял DeepSeek Coder v2. Я пока не очень понимаю, где тут деньги для бизнеса – программисты любят платить разве что за подержанный матрац; с другой стороны, говорят, что умение программировать – это почти что заветный reasoning, а там и до AGI рукой подать. Опять же, мне кажется, что в целом после претрейна модели обладают достаточными знаниями, и проблема в кодинг-LLMках заключается в посттренинге – например, Gemini 1.5 Pro поднялся на livebench в категории кодинга на 9% – это почти разница между 4o и 3.5 Sonnet. 📈

При всём этом, забывать о больших моделях я не собираюсь. Хоть LLM-пухляши и тренируются долго 🥁, вау-эффекта от моделей поменьше ждать пока не приходится. На всякий случай – мой пост – это не анонс анонса и не слив, как любят делать наши открытые ИИ-друзья 🪖. Результаты работы, особенно в претрейне, видны публично через месяцы. Так что запасаемся терпением вместе. 😮‍💨

Кстати пока ждём, напомню, что у нашего Gemini 1.5 Flash бесплатно можно сделать 1500 бесплатных запросов в день с запросами до миллиона токенов – у OpenAI эквивалентная модель GPT-4o-mini обойдётся вам в ~$25 ежедневно. На сдачу вы теперь можете поставить мне блестящую звёздочку под постом, а я вам взамен обещаю не использовать их ни на что полезное. 🤑

BY epsilon correct


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/epsiloncorrect/189

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from ru


Telegram epsilon correct
FROM American