Telegram Group & Telegram Channel
Почему графы?

В комментариях к новому интро задали понятный вопрос: как так сложилось, что я занимаюсь графами? Об этом я и сам частенько задумываюсь 🤪, так что пора и вам рассказать.

Для начала – немного истории: моё первое знакомство с около-рисёрчем по графам произошло на последнем курсе бакалавриата НИУ ВШЭ – мне хотелось повыпендриваться и написать наукоёмкую выпускную работу. Тогда был расцвет графовой кластеризации: люди придумывали быстрые алгоритмы оптимизации модульности, исследовали её пределы разрешающей способности, и писали на эту тему красиво свёрстанные стостраничные обзоры. Я набрёл на новую функцию, альтернативную модульности, с говорящим названием Surprise. Для неё тогда не было показано результатов жадного алгоритма (который для модульности называется алгоритмом Лёвена), вот его я придумал, заимплементировал, и чуток побенчмаркал. Хоть тогда он никому не приглянулся, начало было положено.

После вышки я пошёл в сколтех, где мне повезло работать с Panagiotis Karras, у которому тоже были интересны графы. Сначала мы пытались придумать что-то про influence maximization, но потом, ближе к концу магистратуры, я набрёл на тему графовых эмбеддингов – вот с этого момента всё и завертелось, потому что стало понятно, что их можно глубоко изучать в аспирантуре.

В изучении графов меня подкупает несколько аспектов. Во-первых, интуитивно простая модель данных: объяснить понятие графо можно за чашкой чая бабушке. При этом в области много интересных и глубоких результатов, связывающих графы с другими областями математики. Во-вторых, широкая применимость: если ты придумаешь хороший метод решения почти любой задачи на графах, шанс, что им воспользуются учёные в прикладной области, довольно велик. В-третьих, связанность с реальным железом: из-за неприспособленности компьютеров для работы с графами, для разных размеров задач можно придумывать новые алгоритмы, которые будут использовать, например, распределённые вычисления.

Почти на любые данные можно смотреть, как на граф, а иногда это даже бывает полезно. С другой стороны, любителям машинного обучения как область для вкатывания рекомендовать графы тоже не особо хочется. 😐
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/215
Create:
Last Update:

Почему графы?

В комментариях к новому интро задали понятный вопрос: как так сложилось, что я занимаюсь графами? Об этом я и сам частенько задумываюсь 🤪, так что пора и вам рассказать.

Для начала – немного истории: моё первое знакомство с около-рисёрчем по графам произошло на последнем курсе бакалавриата НИУ ВШЭ – мне хотелось повыпендриваться и написать наукоёмкую выпускную работу. Тогда был расцвет графовой кластеризации: люди придумывали быстрые алгоритмы оптимизации модульности, исследовали её пределы разрешающей способности, и писали на эту тему красиво свёрстанные стостраничные обзоры. Я набрёл на новую функцию, альтернативную модульности, с говорящим названием Surprise. Для неё тогда не было показано результатов жадного алгоритма (который для модульности называется алгоритмом Лёвена), вот его я придумал, заимплементировал, и чуток побенчмаркал. Хоть тогда он никому не приглянулся, начало было положено.

После вышки я пошёл в сколтех, где мне повезло работать с Panagiotis Karras, у которому тоже были интересны графы. Сначала мы пытались придумать что-то про influence maximization, но потом, ближе к концу магистратуры, я набрёл на тему графовых эмбеддингов – вот с этого момента всё и завертелось, потому что стало понятно, что их можно глубоко изучать в аспирантуре.

В изучении графов меня подкупает несколько аспектов. Во-первых, интуитивно простая модель данных: объяснить понятие графо можно за чашкой чая бабушке. При этом в области много интересных и глубоких результатов, связывающих графы с другими областями математики. Во-вторых, широкая применимость: если ты придумаешь хороший метод решения почти любой задачи на графах, шанс, что им воспользуются учёные в прикладной области, довольно велик. В-третьих, связанность с реальным железом: из-за неприспособленности компьютеров для работы с графами, для разных размеров задач можно придумывать новые алгоритмы, которые будут использовать, например, распределённые вычисления.

Почти на любые данные можно смотреть, как на граф, а иногда это даже бывает полезно. С другой стороны, любителям машинного обучения как область для вкатывания рекомендовать графы тоже не особо хочется. 😐

BY epsilon correct


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/epsiloncorrect/215

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Anastasia Vlasova/Getty Images
from ru


Telegram epsilon correct
FROM American