Notice: file_put_contents(): Write of 10208 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 4096 of 14304 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Цифровой геноцид | Telegram Webview: gulagdigital/2920 -
Telegram Group & Telegram Channel
Нобелевская премия, институты и LLM

Не самый большой знаток работ Аджемоглу и, признаюсь, читать его книги "Почему богатые страны"(имейте институты и имейте их сто лет назад, желающие могут почитать Ватоадмина/Василия Тополева) было непросто. Но поговорим лучше о старой Нобелевке, писал о ней год назад.

"Грамматика институтов" — подход, предложенный Сью Кроуфорд и Элионор Остром в 1995 году. Он фокусируется на синтаксических структурных элементах, которые составляют и формируют институции. В 2009 году Элинор Остром получила премию памяти А. Нобеля по экономике за анализ феномена "economic governance" (термина, которому сложно подобрать точное русскоязычное обозначение).

Ссылка: https://www.group-telegram.com/evidence_guide/9

Широкое распространение подхода "грамматики институтов" затрудняют высокие временные и ресурсные затраты. В статье предлагается использовать машинное обучение и анализировать тексты с помощью методов NLP (обработка естественного языка). В качестве примера используется анализ 19 документов, регламентирующих работу пищевой отрасли.

Rice, Douglas, et al. "Machine Coding of Policy Texts with the Institutional Grammar." Public Administration. December 2020.
Ссылка: https://onlinelibrary.wiley.com/doi/10.1111/padm.12711

Этапы анализа:

1. Текст обрабатывается и размечается с помощью методов NLP для учета нестандартного форматирования: специфической пунктуации (тире, "буллеты" и т.п.) и сложной структуры текста. Для этого используется пакет Stanford CoreNLP на языке R.

2. Далее текст размечается по правилам "грамматики институтов" с помощью машинного обучения с учителем. Выделяются следующие 6 синтаксических элементов:

- Атрибут (Attribute, [A]) – актор, к которому относится утверждение.
- Цель (Aim, [I]) – действие утверждения.
- Деонтика (Deontic, [D]) – предписание, что актор должен или не должен делать.
- Объект (Object, [B]) – объект, к которому относится действие.
- Условие (Condition, [C]) – временные, пространственные или регуляторные ограничения.
- Or else (O) – стимул для выполнения или невыполнения действия (например, наказание за нарушение).

Эти элементы объединяются в набор, обозначаемый как ABDICO.

Пример:
Предложение: "Операции, сертифицированные как органические в соответствии с Национальной программой США по органическому производству, должны ежегодно представлять план органической системы, в противном случае сертификация будет отменена."

Разметка:
- Атрибут: "Операции, сертифицированные как органические..."
- Деонтика: "должны"
- Цель: "представлять"
- Объект: "план органической системы"
- Условие: "ежегодно"
- Or else: "в противном случае сертификация будет отменена"

В статье использовался набор из 19 документов, регламентирующих работу пищевой отрасли. Все слова, размеченные вручную как элементы "грамматики институтов", были разделены на обучающее множество (8320 слов) и множество для оценки (922 слова). Разметка текстов в соответствии с правилами "грамматики институтов" производилась с использованием машинного обучения с учителем, в частности нейронных сетей.

"Грамматика институтов", предложенная более двух десятилетий назад, открывает перспективы для ученых, занимающихся государственной политикой и администрированием, заинтересованных в систематическом изучении структуры и понимания политических текстов. Полученный уровень точности автоматической классификации подтверждает полезность такого анализа текстов в рамках подхода "грамматики институтов". Увеличение точности возможно при расширении количества классифицированных текстов, совершенствовании методов обработки естественного языка и машинного обучения.

Теперь ждём применения методов грамматики институтов на дешёвом LLM и ChatGPT.



group-telegram.com/gulagdigital/2920
Create:
Last Update:

Нобелевская премия, институты и LLM

Не самый большой знаток работ Аджемоглу и, признаюсь, читать его книги "Почему богатые страны"(имейте институты и имейте их сто лет назад, желающие могут почитать Ватоадмина/Василия Тополева) было непросто. Но поговорим лучше о старой Нобелевке, писал о ней год назад.

"Грамматика институтов" — подход, предложенный Сью Кроуфорд и Элионор Остром в 1995 году. Он фокусируется на синтаксических структурных элементах, которые составляют и формируют институции. В 2009 году Элинор Остром получила премию памяти А. Нобеля по экономике за анализ феномена "economic governance" (термина, которому сложно подобрать точное русскоязычное обозначение).

Ссылка: https://www.group-telegram.com/evidence_guide/9

Широкое распространение подхода "грамматики институтов" затрудняют высокие временные и ресурсные затраты. В статье предлагается использовать машинное обучение и анализировать тексты с помощью методов NLP (обработка естественного языка). В качестве примера используется анализ 19 документов, регламентирующих работу пищевой отрасли.

Rice, Douglas, et al. "Machine Coding of Policy Texts with the Institutional Grammar." Public Administration. December 2020.
Ссылка: https://onlinelibrary.wiley.com/doi/10.1111/padm.12711

Этапы анализа:

1. Текст обрабатывается и размечается с помощью методов NLP для учета нестандартного форматирования: специфической пунктуации (тире, "буллеты" и т.п.) и сложной структуры текста. Для этого используется пакет Stanford CoreNLP на языке R.

2. Далее текст размечается по правилам "грамматики институтов" с помощью машинного обучения с учителем. Выделяются следующие 6 синтаксических элементов:

- Атрибут (Attribute, [A]) – актор, к которому относится утверждение.
- Цель (Aim, [I]) – действие утверждения.
- Деонтика (Deontic, [D]) – предписание, что актор должен или не должен делать.
- Объект (Object, [B]) – объект, к которому относится действие.
- Условие (Condition, [C]) – временные, пространственные или регуляторные ограничения.
- Or else (O) – стимул для выполнения или невыполнения действия (например, наказание за нарушение).

Эти элементы объединяются в набор, обозначаемый как ABDICO.

Пример:
Предложение: "Операции, сертифицированные как органические в соответствии с Национальной программой США по органическому производству, должны ежегодно представлять план органической системы, в противном случае сертификация будет отменена."

Разметка:
- Атрибут: "Операции, сертифицированные как органические..."
- Деонтика: "должны"
- Цель: "представлять"
- Объект: "план органической системы"
- Условие: "ежегодно"
- Or else: "в противном случае сертификация будет отменена"

В статье использовался набор из 19 документов, регламентирующих работу пищевой отрасли. Все слова, размеченные вручную как элементы "грамматики институтов", были разделены на обучающее множество (8320 слов) и множество для оценки (922 слова). Разметка текстов в соответствии с правилами "грамматики институтов" производилась с использованием машинного обучения с учителем, в частности нейронных сетей.

"Грамматика институтов", предложенная более двух десятилетий назад, открывает перспективы для ученых, занимающихся государственной политикой и администрированием, заинтересованных в систематическом изучении структуры и понимания политических текстов. Полученный уровень точности автоматической классификации подтверждает полезность такого анализа текстов в рамках подхода "грамматики институтов". Увеличение точности возможно при расширении количества классифицированных текстов, совершенствовании методов обработки естественного языка и машинного обучения.

Теперь ждём применения методов грамматики институтов на дешёвом LLM и ChatGPT.

BY Цифровой геноцид


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gulagdigital/2920

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital.
from ru


Telegram Цифровой геноцид
FROM American