Notice: file_put_contents(): Write of 3317 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 11509 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Дневник Бродского | Telegram Webview: kusaka_daily/226 -
Telegram Group & Telegram Channel
Мне вчера рассказали очень крутое, а главное, естественное доказательство квадратичного закона взаимности Гаусса. Видимо, оно является переведенным на язык теории Галуа стандартным рассуждением с рассмотрением сумм экспонент. Наверное, это рассуждение будет не очень понятно школьникам, так для его осознания надо немного шарить за кольца целых и достаточно базовую теорию Галуа.

Начну с формулировки. Пусть у вас имеется некоторое простое число p. Тогда ненулевые остатки по модулю p бывают двух видов: a называется квадратичным вычетом, если a = x^2 для некоторого другого остатка x. В противном случае a называется квадратичным невычетом. В первом случае будем писать (a | p) = 1, во втором (a | p) = -1. Так вот квадратичный закон взаимности утверждает, что для двух простых чисел p и q больших 2 выполняется следующее тождество: (p | q) * (q | p) = (-1)^(p-1/ 2) * (q-1 / 2)

У этого утверждения существует множества доказательств, в том числе и совсем элементарные, не требующие даже знаний комплексных чисел. Однако расплата за элементарность, как это обычно и бывает, это крайне вычурные рассуждения, которые очень сложно придумать. Я же хочу дать набросок короткого и понятного рассуждения, которое опирается на несовсем элементарный аппарат.

Итак, начнем с того, что рассмотрим eps — комплексный корень степени p из 1. У Q(eps) (оно же поле разложения многочлена x^p - 1 / x - 1) есть единственное квадратичное подрасширение Q(\sqrt(D) ) при некотором целом D, так как в группа Галуа Q(eps) это (Z/pZ)^* имеет единственную подгруппу индекса 2. Очень хорошо, давайте теперь изучим кольца целых двух полученных полей. O(eps) это Z[eps], а O(\sqrt(D)) это либо Z[\sqrt(D)] либо Z[( 1 + \sqrt(D) ) / 2].

Теперь заведем второе простое число q. Идея заключается в том, чтобы посмотреть на простые идеалы, которые весят над q в интересующих нас кольцах целых. Их изучение немедленно приведет к квадратичному закону. Заметим, что q не ветвится в Z[eps] так как q по тривиальным причинам не делит disk(x^p - 1 / x - 1). Это заодно означает, что q не ветвится и в Z[sqrt(D)]. Кажется, дискриминант Z[ 1 + sqrt(D) / 2] это 2D или 4D (точно не помню), но так или иначе так как q больше 2 и не делит D, то и эту шутку оно не делит. Получаем, что q в любом случае неразветвленно в каждом из наших колец целых.

Пусть I и I* это простые идеалы, висящие над q в Z[eps] и втором кольце соответственно. Теорема Дедекинда нам сообщает, что в Gal(Q(eps)) можно найти такой элемент S, что S(x) сравнимо с x^q по модулю I для любого x из Z[eps], и аналогичный S* можно найти в Gal(Q(sqrt(D)). Далее у нас имеется сюрьектинвный гомоморфизм их Gal(Q(eps)) = (Z / pZ)^* в Gal(Q(\sqrt(D)) = {-1, 1} (по умножению): четные степени первообразного корня он переводит в 1, а нечетные в -1, то есть этот гомоморфизм это просто (x | p). Если теперь написать, что S переходит в S*, то в точности получится квадратичный закон!



group-telegram.com/kusaka_daily/226
Create:
Last Update:

Мне вчера рассказали очень крутое, а главное, естественное доказательство квадратичного закона взаимности Гаусса. Видимо, оно является переведенным на язык теории Галуа стандартным рассуждением с рассмотрением сумм экспонент. Наверное, это рассуждение будет не очень понятно школьникам, так для его осознания надо немного шарить за кольца целых и достаточно базовую теорию Галуа.

Начну с формулировки. Пусть у вас имеется некоторое простое число p. Тогда ненулевые остатки по модулю p бывают двух видов: a называется квадратичным вычетом, если a = x^2 для некоторого другого остатка x. В противном случае a называется квадратичным невычетом. В первом случае будем писать (a | p) = 1, во втором (a | p) = -1. Так вот квадратичный закон взаимности утверждает, что для двух простых чисел p и q больших 2 выполняется следующее тождество: (p | q) * (q | p) = (-1)^(p-1/ 2) * (q-1 / 2)

У этого утверждения существует множества доказательств, в том числе и совсем элементарные, не требующие даже знаний комплексных чисел. Однако расплата за элементарность, как это обычно и бывает, это крайне вычурные рассуждения, которые очень сложно придумать. Я же хочу дать набросок короткого и понятного рассуждения, которое опирается на несовсем элементарный аппарат.

Итак, начнем с того, что рассмотрим eps — комплексный корень степени p из 1. У Q(eps) (оно же поле разложения многочлена x^p - 1 / x - 1) есть единственное квадратичное подрасширение Q(\sqrt(D) ) при некотором целом D, так как в группа Галуа Q(eps) это (Z/pZ)^* имеет единственную подгруппу индекса 2. Очень хорошо, давайте теперь изучим кольца целых двух полученных полей. O(eps) это Z[eps], а O(\sqrt(D)) это либо Z[\sqrt(D)] либо Z[( 1 + \sqrt(D) ) / 2].

Теперь заведем второе простое число q. Идея заключается в том, чтобы посмотреть на простые идеалы, которые весят над q в интересующих нас кольцах целых. Их изучение немедленно приведет к квадратичному закону. Заметим, что q не ветвится в Z[eps] так как q по тривиальным причинам не делит disk(x^p - 1 / x - 1). Это заодно означает, что q не ветвится и в Z[sqrt(D)]. Кажется, дискриминант Z[ 1 + sqrt(D) / 2] это 2D или 4D (точно не помню), но так или иначе так как q больше 2 и не делит D, то и эту шутку оно не делит. Получаем, что q в любом случае неразветвленно в каждом из наших колец целых.

Пусть I и I* это простые идеалы, висящие над q в Z[eps] и втором кольце соответственно. Теорема Дедекинда нам сообщает, что в Gal(Q(eps)) можно найти такой элемент S, что S(x) сравнимо с x^q по модулю I для любого x из Z[eps], и аналогичный S* можно найти в Gal(Q(sqrt(D)). Далее у нас имеется сюрьектинвный гомоморфизм их Gal(Q(eps)) = (Z / pZ)^* в Gal(Q(\sqrt(D)) = {-1, 1} (по умножению): четные степени первообразного корня он переводит в 1, а нечетные в -1, то есть этот гомоморфизм это просто (x | p). Если теперь написать, что S переходит в S*, то в точности получится квадратичный закон!

BY Дневник Бродского


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/kusaka_daily/226

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands.
from ru


Telegram Дневник Бродского
FROM American