Telegram Group & Telegram Channel
An update on disrupting deceptive uses of AI
Nimmo & Flossman, OpenAI, 2024
Блог, отчет

Одна из тем, которая всех волнует в связи с развитием LLM – это capability uplift: когда злоумышленник, который умеет не очень много, с помощью LLM становится способным на большее. В основном это касается трех областей: биологическая безопасность (человек с любительскими познаниями в биологии учится синтезировать опасные вирусы), химическая (аналогично – как изготовить взрывчатку, если я ничего не умею) и кибербезопасность. История с кибербезопасностью мне кажется наиболее реалистичной, так как для выполнения инструкции по синтезу чего-нибудь физического тебе нужна лаборатория (хотя и это сейчас не прям проблема), а для выполнения кода тебе нужен только тот же компьютер, с которого ты ходишь в ChatGPT.

Мы уже видим по косвенным признакам, что злоумышленники интересуются применением LLM для своих грязных дел, а вот OpenAI (у которой есть доступ к чатам с ChatGPT) может наблюдать за этим напрямую – о чем они и рассказывают в отчете. Он, конечно, немного тенденциозно привязан к выборам (двум самым важным – в США и в Руанде, конечно же), но, тем не менее, достаточно интересен. Состоит отчет из основных выводов и наблюдений и двух групп разобранных кейсов – применение в кибероперациях и в информационных операциях.

В целом, OpenAI делает следующие выводы:

1. Атакующие всячески экспериментируют с моделями и находят для них новые применения, но к появлению качественных изменений в тактиках и техниках это не приводит, равно как и к качественному увеличению эффективности их кибер- и информационных операций.
2. Злоумышленники используют ChatGPT для промежуточных стадий атаки – когда у них уже есть, например, каналы для распространения постов в соцмедиа или вредоносного ПО, но до непосредственных атак/начала распространения дезинформации.
3. Компании, создающие ИИ-инструменты, сами становятся целями атак: одна «предположительно, китайская» группировка отправляла сотрудникам OpenAI целевой фишинг.



group-telegram.com/llmsecurity/339
Create:
Last Update:

An update on disrupting deceptive uses of AI
Nimmo & Flossman, OpenAI, 2024
Блог, отчет

Одна из тем, которая всех волнует в связи с развитием LLM – это capability uplift: когда злоумышленник, который умеет не очень много, с помощью LLM становится способным на большее. В основном это касается трех областей: биологическая безопасность (человек с любительскими познаниями в биологии учится синтезировать опасные вирусы), химическая (аналогично – как изготовить взрывчатку, если я ничего не умею) и кибербезопасность. История с кибербезопасностью мне кажется наиболее реалистичной, так как для выполнения инструкции по синтезу чего-нибудь физического тебе нужна лаборатория (хотя и это сейчас не прям проблема), а для выполнения кода тебе нужен только тот же компьютер, с которого ты ходишь в ChatGPT.

Мы уже видим по косвенным признакам, что злоумышленники интересуются применением LLM для своих грязных дел, а вот OpenAI (у которой есть доступ к чатам с ChatGPT) может наблюдать за этим напрямую – о чем они и рассказывают в отчете. Он, конечно, немного тенденциозно привязан к выборам (двум самым важным – в США и в Руанде, конечно же), но, тем не менее, достаточно интересен. Состоит отчет из основных выводов и наблюдений и двух групп разобранных кейсов – применение в кибероперациях и в информационных операциях.

В целом, OpenAI делает следующие выводы:

1. Атакующие всячески экспериментируют с моделями и находят для них новые применения, но к появлению качественных изменений в тактиках и техниках это не приводит, равно как и к качественному увеличению эффективности их кибер- и информационных операций.
2. Злоумышленники используют ChatGPT для промежуточных стадий атаки – когда у них уже есть, например, каналы для распространения постов в соцмедиа или вредоносного ПО, но до непосредственных атак/начала распространения дезинформации.
3. Компании, создающие ИИ-инструменты, сами становятся целями атак: одна «предположительно, китайская» группировка отправляла сотрудникам OpenAI целевой фишинг.

BY llm security и каланы




Share with your friend now:
group-telegram.com/llmsecurity/339

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted.
from ru


Telegram llm security и каланы
FROM American