Notice: file_put_contents(): Write of 2339 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 10531 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Математическая свалка Сепы | Telegram Webview: math_dump_of_sepa/267 -
Telegram Group & Telegram Channel
𝑙_p-комплексы Виеториса-Рипса

Мы с моим китайским другом Сяоменгом выложили препринт, в котором определяем обобщение комплекса Виеториса-Рипса, зависящее от дополнительного параметра
1≤𝑝≤∞. В этом определении используется 𝑙_p-норма. При 𝑝=∞ получается обычный комплекс Виеториса-Рипса, а при 𝑝=1 — пространство, гомологии которого — это размытые магнитудные гомологии.

Таким образом, мы объединяем эти две теории и утверждаем, что их следует изучать вместе. В частности, мы доказываем, что для компактного риманова многообразия 𝑀 при малом параметре 𝑟 этот комплекс гомотопически эквивалентен 𝑀 для любого 𝑝. Мы также приводим доказательства других свойств, которые ранее были известны для классического комплекса Виеториса-Рипса. Например, при переходе к пополнению метрического пространства гомотопический тип 𝑙_p-комплекса Виеториса-Рипса сохраняется.

Кроме того, мы доказываем свойство, которое удивило некоторых специалистов по магнитудным гомологиям. Мы показываем, что гомологии нашего 𝑙_p-комплекса Виеториса-Рипса коммутируют с фильтрующимися копределами метрических пространств. Важно отметить, что в этом доказательстве используется строгое неравенство в определении комплекса; для нестрогого неравенства это свойство не выполняется. В частности, строго размытые магнитудные гомологии коммутируют с фильтрующимися копределами, а нестрого размытые (как и обычные магнитудные) не коммутируют.

Подробности в прикреплённой далее презентации, и в архиве

https://arxiv.org/abs/2411.01857



group-telegram.com/math_dump_of_sepa/267
Create:
Last Update:

𝑙_p-комплексы Виеториса-Рипса

Мы с моим китайским другом Сяоменгом выложили препринт, в котором определяем обобщение комплекса Виеториса-Рипса, зависящее от дополнительного параметра
1≤𝑝≤∞. В этом определении используется 𝑙_p-норма. При 𝑝=∞ получается обычный комплекс Виеториса-Рипса, а при 𝑝=1 — пространство, гомологии которого — это размытые магнитудные гомологии.

Таким образом, мы объединяем эти две теории и утверждаем, что их следует изучать вместе. В частности, мы доказываем, что для компактного риманова многообразия 𝑀 при малом параметре 𝑟 этот комплекс гомотопически эквивалентен 𝑀 для любого 𝑝. Мы также приводим доказательства других свойств, которые ранее были известны для классического комплекса Виеториса-Рипса. Например, при переходе к пополнению метрического пространства гомотопический тип 𝑙_p-комплекса Виеториса-Рипса сохраняется.

Кроме того, мы доказываем свойство, которое удивило некоторых специалистов по магнитудным гомологиям. Мы показываем, что гомологии нашего 𝑙_p-комплекса Виеториса-Рипса коммутируют с фильтрующимися копределами метрических пространств. Важно отметить, что в этом доказательстве используется строгое неравенство в определении комплекса; для нестрогого неравенства это свойство не выполняется. В частности, строго размытые магнитудные гомологии коммутируют с фильтрующимися копределами, а нестрого размытые (как и обычные магнитудные) не коммутируют.

Подробности в прикреплённой далее презентации, и в архиве

https://arxiv.org/abs/2411.01857

BY Математическая свалка Сепы




Share with your friend now:
group-telegram.com/math_dump_of_sepa/267

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram.
from ru


Telegram Математическая свалка Сепы
FROM American