Notice: file_put_contents(): Write of 9770 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
Warning: file_put_contents(): Only 4096 of 13866 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50 Математические байки | Telegram Webview: mathtabletalks/4645 -
А что будет, если мы попробуем то же самое доказательство провести на сфере? (Где сумма углов треугольника уже не π — скажем, там есть равносторонний прямоугольный треугольник с тремя прямыми углами!)
Проблема будет в том, что у нас уже нет параллельного переноса, позволяющего отождествить касательные плоскости в разных точках сферы. А вектор скорости идущего вдоль забора человека — лежит в касательной плоскости в той точке, где человек сейчас находится; в частности, угол, на который он поворачивает в вершине — откладывается в касательной плоскости именно в этой вершине. А касательные плоскости в разных точках — разные.
Ну хорошо, а нельзя ли с этим что-нибудь сделать? Например: а что, если идущий человек попытается тащить касательную плоскость с собой?
Пусть он идёт вдоль пути длины L. Поделим его на N отрезков длины L/N. Человек прошёл один отрезок и перенёс касательную плоскость параллельно в R^3. Но в новой точке касательная плоскость другая — параллельно перенесённые вектора накренились на угол порядка (1/N) (точнее, (L/R) (1/N), где R — радиус сферы, но путь и сфера у нас фиксированы, а меняем мы N). Человек спохватился и что-нибудь с этим сделал — например, ортогонально спроецировал новые вектора на касательную плоскость в новой точке. («Какая ещё нормальная компонента? Вам показалось, тут ничего не было!») И так он сделал N раз.
А сильно ли у нас поменялись длины векторов к концу пути? У нас было N операций проецирования — так что на вид кажется, что сильно. Но. Каждая из них умножает длины на косинус соответствующего угла, который порядка (1/N). А cos x = 1 - x^2/2 + …, так что косинусы эти не просто близкие к 1, а отличаются на величину всего лишь порядка 1/N^2 ! Так что даже произведение N таких косинусов близко к 1 (логарифм у него порядка 1/N).
Итого — мы определили параллельный перенос вдоль кривой (на сфере, а на самом деле — на любой поверхности, и даже на любом многообразии, вложенном в хоть какое-нибудь R^n). И он оказался ортогональным — сохраняющим длины касательных векторов — преобразованием.
Но вот только… результат параллельного переноса будет зависеть от выбора пути! Или, что то же самое — пройдя по замкнутому пути, мы можем обнаружить (и почти всегда обнаружим), что наше касательное пространство как-то повернулось.
Собственно — для случая поверхности в R^3, именно этот поворот и есть дефект угла, то, на сколько сумма внешних углов отличается от 2π! Потому что — представим себе, что человек обходит многоугольник, например, на сфере. Он несёт с собой касательное пространство (ну хорошо, для реалистичности — его переносную модель), и отмечает на нём свою скорость. В каждой вершине он добавляет новый сектор-угол поворота. Вернувшись в исходную точку, он получает на своей модели все сектора-углы, на которые он повернулся. И казалось бы, это полный оборот, только заканчивается их сумма в его векторе скорости сейчас, а начинается — в том же самом векторе скорости, обнесённом вокруг всего многоугольника. То есть повёрнутом параллельным переносом!
Так что на формулу, что на сфере радиуса R сумма углов треугольника равна π+(S/R^2) — можно смотреть как на утверждение, что при обходе фигуры площади S параллельный перенос приводит к повороту на S/R^2 (с правильным знаком). (И это не конец рассказа, конечно.)
А что будет, если мы попробуем то же самое доказательство провести на сфере? (Где сумма углов треугольника уже не π — скажем, там есть равносторонний прямоугольный треугольник с тремя прямыми углами!)
Проблема будет в том, что у нас уже нет параллельного переноса, позволяющего отождествить касательные плоскости в разных точках сферы. А вектор скорости идущего вдоль забора человека — лежит в касательной плоскости в той точке, где человек сейчас находится; в частности, угол, на который он поворачивает в вершине — откладывается в касательной плоскости именно в этой вершине. А касательные плоскости в разных точках — разные.
Ну хорошо, а нельзя ли с этим что-нибудь сделать? Например: а что, если идущий человек попытается тащить касательную плоскость с собой?
Пусть он идёт вдоль пути длины L. Поделим его на N отрезков длины L/N. Человек прошёл один отрезок и перенёс касательную плоскость параллельно в R^3. Но в новой точке касательная плоскость другая — параллельно перенесённые вектора накренились на угол порядка (1/N) (точнее, (L/R) (1/N), где R — радиус сферы, но путь и сфера у нас фиксированы, а меняем мы N). Человек спохватился и что-нибудь с этим сделал — например, ортогонально спроецировал новые вектора на касательную плоскость в новой точке. («Какая ещё нормальная компонента? Вам показалось, тут ничего не было!») И так он сделал N раз.
А сильно ли у нас поменялись длины векторов к концу пути? У нас было N операций проецирования — так что на вид кажется, что сильно. Но. Каждая из них умножает длины на косинус соответствующего угла, который порядка (1/N). А cos x = 1 - x^2/2 + …, так что косинусы эти не просто близкие к 1, а отличаются на величину всего лишь порядка 1/N^2 ! Так что даже произведение N таких косинусов близко к 1 (логарифм у него порядка 1/N).
Итого — мы определили параллельный перенос вдоль кривой (на сфере, а на самом деле — на любой поверхности, и даже на любом многообразии, вложенном в хоть какое-нибудь R^n). И он оказался ортогональным — сохраняющим длины касательных векторов — преобразованием.
Но вот только… результат параллельного переноса будет зависеть от выбора пути! Или, что то же самое — пройдя по замкнутому пути, мы можем обнаружить (и почти всегда обнаружим), что наше касательное пространство как-то повернулось.
Собственно — для случая поверхности в R^3, именно этот поворот и есть дефект угла, то, на сколько сумма внешних углов отличается от 2π! Потому что — представим себе, что человек обходит многоугольник, например, на сфере. Он несёт с собой касательное пространство (ну хорошо, для реалистичности — его переносную модель), и отмечает на нём свою скорость. В каждой вершине он добавляет новый сектор-угол поворота. Вернувшись в исходную точку, он получает на своей модели все сектора-углы, на которые он повернулся. И казалось бы, это полный оборот, только заканчивается их сумма в его векторе скорости сейчас, а начинается — в том же самом векторе скорости, обнесённом вокруг всего многоугольника. То есть повёрнутом параллельным переносом!
Так что на формулу, что на сфере радиуса R сумма углов треугольника равна π+(S/R^2) — можно смотреть как на утверждение, что при обходе фигуры площади S параллельный перенос приводит к повороту на S/R^2 (с правильным знаком). (И это не конец рассказа, конечно.)
Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media.
from ru