Telegram Group & Telegram Channel
Как показывают ответы выше, вопрос не такой уж и интуитивно понятный. На самом деле, если пытаться не просто угадать, а доказать соответствующий факт, то задача становится еще запутаннее.

Я знаю общий ответ в n-мерном пространстве и доказательство, в котором первый шаг... это преобразование Фурье характеристической функции куба. Правда, не выглядит тривиально?

Тем не менее, если ответ получен, то вместе с ним получается и ответ на такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь меньше, чем сечение L той же гиперплоскостью. Верно ли, что тогда объем K меньше объема L?

Ответ оказывается отрицательным и контрпримером в размерностях больше 10 (не помню точно) служат куб и шар. А все потому, что можно явно указать сечение наибольшей площади у куба и посчитать ее.

Естественным продолжением служит такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь как минимум в C раз меньше, чем сечение L той же гиперплоскостью. Верно ли, что существует такая универсальная константа C (не зависящая от размерности), которая гарантирует, что объем K меньше объема L?

Этот вопрос оставался открытым около 40 лет. И позавчера опубликовали препринт, подтверждающий, что это утверждение верно!

Что интересно, у этой гипотезы (теперь уже теоремы) есть множество абсолютно разнородных и нетривиальных переформулировок. Помню я даже как-то делал доклад в лаборатории Ч и рассказывал про это.

Вот, например, simplex conjecture (не помню, эквивалентна ли, но в одну сторону следствие точно есть).

Simplex conjecture. Обозначим через m(K) среднее значение объемов симплексов, лежащих внутри K. Тогда среди всех выпуклых тел единичного объема максимум m достигается на симплексе. (Минимум, кстати, достигается на шаре и это известно.)



group-telegram.com/olympgeom/1573
Create:
Last Update:

Как показывают ответы выше, вопрос не такой уж и интуитивно понятный. На самом деле, если пытаться не просто угадать, а доказать соответствующий факт, то задача становится еще запутаннее.

Я знаю общий ответ в n-мерном пространстве и доказательство, в котором первый шаг... это преобразование Фурье характеристической функции куба. Правда, не выглядит тривиально?

Тем не менее, если ответ получен, то вместе с ним получается и ответ на такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь меньше, чем сечение L той же гиперплоскостью. Верно ли, что тогда объем K меньше объема L?

Ответ оказывается отрицательным и контрпримером в размерностях больше 10 (не помню точно) служат куб и шар. А все потому, что можно явно указать сечение наибольшей площади у куба и посчитать ее.

Естественным продолжением служит такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь как минимум в C раз меньше, чем сечение L той же гиперплоскостью. Верно ли, что существует такая универсальная константа C (не зависящая от размерности), которая гарантирует, что объем K меньше объема L?

Этот вопрос оставался открытым около 40 лет. И позавчера опубликовали препринт, подтверждающий, что это утверждение верно!

Что интересно, у этой гипотезы (теперь уже теоремы) есть множество абсолютно разнородных и нетривиальных переформулировок. Помню я даже как-то делал доклад в лаборатории Ч и рассказывал про это.

Вот, например, simplex conjecture (не помню, эквивалентна ли, но в одну сторону следствие точно есть).

Simplex conjecture. Обозначим через m(K) среднее значение объемов симплексов, лежащих внутри K. Тогда среди всех выпуклых тел единичного объема максимум m достигается на симплексе. (Минимум, кстати, достигается на шаре и это известно.)

BY Олимпиадная геометрия


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/olympgeom/1573

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed.
from ru


Telegram Олимпиадная геометрия
FROM American