Telegram Group & Telegram Channel
Собственно, LMSYS почесали репу и придумали новый бенчмарк, Arena Hard v0.1
Ключевых метрики для сравнения с MTBench две:
1. Agreement. Дан запрос и ответы двух LLM. Вот человек выбрал первый или второй как более предпочтительный. В каком проценте случаев автоматическая система оценки будет совпадать с ответом кожаного?
2. Separability. Если мы выберем топ-20 моделей с Arena, то для какой доли пар между всеми моделями их получится разделить с учётом бутстрепа и построения 95%-ого доверительного интервала? (это как раз критерий 1️⃣из поста выше). На пальцах: если у нас 4 модели, то получается 6 пар. Когда мы сравниваем интервалы для этих моделей, то если они не пересекаются, и та модель, что выше в рейтинге по реальным человеческим оценкам, выше и тут — то это +1/6 (~16.6%, потому что 6 пар).

Agreement:
— MTBench 26.1%
— Arena-Hard-v0.1 89.1% (!) — это очень много, у людей-оценщиков между собой не всегда так сходятся оценки. Помню в работах OpenAI при создании датасетов для праотца ChatGPT сами исследователи соглашались друг с другом в ~83% случаев. А тут модель угадывает, что ответит человек, почти в 90%.

Separability:
— MTBench 22.6%
— Arena-Hard-v0.1 87.4% — то есть почти все модели можно разделить в том порядке, что есть сейчас. Это тоже высокий показатель, так как в целом не все модели отличаются. Уж между соседними версиями GPT-4-Turbo действительно может не быть огромной разницы, чтобы обнаружить её бенчмарком.

А как, собственно, собирались данные для оценки?
— Взяли 200'000 запросов от людей на Арене
— сделали кластеризацию по топикам, выделив больше 4000 штук
— использовали GPT-4-turbo для объединения в бОльшие группы (aka иерархическая кластериация)
— определили 7 критериев, по которым GPT-4 будет оценивать кластера. Там и сложность, и креативность, и насколько близко к реальным сценариям использования
— произвели оценку, отфильтровали шлак. Кластеры с более высокой оценкой часто соответствуют сложным темам или задачам по меркам LLM, таким как разработка игр или написание мат. доказательств.
— из оставшихся кластеров с оценкой 6-7 (из 7) выбрали 250 штук, из каждого по 2 запроса. Итого 500 промптов
— Модели пишут ответы на запросы. Затем GPT-4 оценивает сначала пару ответов от модели A и B, а затем наоборот — чтобы побороть предвзятость модели, мол, первый ответ чаще бывает лучше. Полный промпт ищите тут.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/seeallochnaya/1346
Create:
Last Update:

Собственно, LMSYS почесали репу и придумали новый бенчмарк, Arena Hard v0.1
Ключевых метрики для сравнения с MTBench две:
1. Agreement. Дан запрос и ответы двух LLM. Вот человек выбрал первый или второй как более предпочтительный. В каком проценте случаев автоматическая система оценки будет совпадать с ответом кожаного?
2. Separability. Если мы выберем топ-20 моделей с Arena, то для какой доли пар между всеми моделями их получится разделить с учётом бутстрепа и построения 95%-ого доверительного интервала? (это как раз критерий 1️⃣из поста выше). На пальцах: если у нас 4 модели, то получается 6 пар. Когда мы сравниваем интервалы для этих моделей, то если они не пересекаются, и та модель, что выше в рейтинге по реальным человеческим оценкам, выше и тут — то это +1/6 (~16.6%, потому что 6 пар).

Agreement:
— MTBench 26.1%
— Arena-Hard-v0.1 89.1% (!) — это очень много, у людей-оценщиков между собой не всегда так сходятся оценки. Помню в работах OpenAI при создании датасетов для праотца ChatGPT сами исследователи соглашались друг с другом в ~83% случаев. А тут модель угадывает, что ответит человек, почти в 90%.

Separability:
— MTBench 22.6%
— Arena-Hard-v0.1 87.4% — то есть почти все модели можно разделить в том порядке, что есть сейчас. Это тоже высокий показатель, так как в целом не все модели отличаются. Уж между соседними версиями GPT-4-Turbo действительно может не быть огромной разницы, чтобы обнаружить её бенчмарком.

А как, собственно, собирались данные для оценки?
— Взяли 200'000 запросов от людей на Арене
— сделали кластеризацию по топикам, выделив больше 4000 штук
— использовали GPT-4-turbo для объединения в бОльшие группы (aka иерархическая кластериация)
— определили 7 критериев, по которым GPT-4 будет оценивать кластера. Там и сложность, и креативность, и насколько близко к реальным сценариям использования
— произвели оценку, отфильтровали шлак. Кластеры с более высокой оценкой часто соответствуют сложным темам или задачам по меркам LLM, таким как разработка игр или написание мат. доказательств.
— из оставшихся кластеров с оценкой 6-7 (из 7) выбрали 250 штук, из каждого по 2 запроса. Итого 500 промптов
— Модели пишут ответы на запросы. Затем GPT-4 оценивает сначала пару ответов от модели A и B, а затем наоборот — чтобы побороть предвзятость модели, мол, первый ответ чаще бывает лучше. Полный промпт ищите тут.

BY Сиолошная


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/seeallochnaya/1346

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram.
from ru


Telegram Сиолошная
FROM American