Telegram Group & Telegram Channel
Но это была не самая интересная часть статьи — не зря же я писал про интерпретируемость?

Авторы задаются вопросами: почему в одном случае модель обобщается и работает, а в другом нет? Как именно модель грокнула задачу и начала решать задачу, какой механизм используется?

Оказывается, эти два вопроса связаны.— все дело в том, как модель решает задачу внутри себя.

В задаче композиции модель разбивается на 2 половинки. В первой она решает задачу «вытащить релевантную сущность», а во второй «вытащить нужное значения для найденной сущности». На примере:
— Возраст жены Барака ... (нужно написать цифру из атомарного факта)

Первые слои вытаскивают информацию о жене Барака (Мишель), и задача как бы становится «Возраст Мишель..» (это было дано в атомарных фактах). И вторая половина модели просто достаёт этот факт.

Проблема в том, что поскольку для части сущностей мы никогда не показывали такие задачки отношений, то модель не запомнила их и не разместила во второй половине. Ей просто неоткуда достать информацию, её не существует в момент обработки — она осталась в первых слоях, в первой половине модели. И это указывает на ограничение архитектуры трансформера — у каждого блока своя память (зашитая в параметры модели), и не получится вернуться на несколько блоков назад, чтобы найти какой-то факт. Если пропустил — всё. Авторы валидируют эту гипотезу изменением трансформера, предоставляя возможность обращаться к фактам из первых слоёв (по сути, банки знаний были общими для двух половинок) — и это заставляет модель работать даже для OOD задачи!

Вот так интерпретирование подсказывает, как нужно менять архитектуру, чтобы получить модель, вырабатывающую генерализуемую логику.

Но почему всё заработало сразу в задаче сравнения? А там работал другой механизм — в первой половине модели происходило извлечение фактов сразу для обеих сущностей (в моём примере это возраст Трампа и Байдена), а во второй половине происходило сравнение. Так как все факты модель успела запомнить, то такое «параллельное» извлечение знаний/выполнение задачи позволило работать с любыми сравнениями.

Самое крутое — что можно вот прямо заглянуть в трансформер и понять, решает модель задачу (научилась логике) или же просто запоминает, что ей говорят.



group-telegram.com/seeallochnaya/1476
Create:
Last Update:

Но это была не самая интересная часть статьи — не зря же я писал про интерпретируемость?

Авторы задаются вопросами: почему в одном случае модель обобщается и работает, а в другом нет? Как именно модель грокнула задачу и начала решать задачу, какой механизм используется?

Оказывается, эти два вопроса связаны.— все дело в том, как модель решает задачу внутри себя.

В задаче композиции модель разбивается на 2 половинки. В первой она решает задачу «вытащить релевантную сущность», а во второй «вытащить нужное значения для найденной сущности». На примере:
— Возраст жены Барака ... (нужно написать цифру из атомарного факта)

Первые слои вытаскивают информацию о жене Барака (Мишель), и задача как бы становится «Возраст Мишель..» (это было дано в атомарных фактах). И вторая половина модели просто достаёт этот факт.

Проблема в том, что поскольку для части сущностей мы никогда не показывали такие задачки отношений, то модель не запомнила их и не разместила во второй половине. Ей просто неоткуда достать информацию, её не существует в момент обработки — она осталась в первых слоях, в первой половине модели. И это указывает на ограничение архитектуры трансформера — у каждого блока своя память (зашитая в параметры модели), и не получится вернуться на несколько блоков назад, чтобы найти какой-то факт. Если пропустил — всё. Авторы валидируют эту гипотезу изменением трансформера, предоставляя возможность обращаться к фактам из первых слоёв (по сути, банки знаний были общими для двух половинок) — и это заставляет модель работать даже для OOD задачи!

Вот так интерпретирование подсказывает, как нужно менять архитектуру, чтобы получить модель, вырабатывающую генерализуемую логику.

Но почему всё заработало сразу в задаче сравнения? А там работал другой механизм — в первой половине модели происходило извлечение фактов сразу для обеих сущностей (в моём примере это возраст Трампа и Байдена), а во второй половине происходило сравнение. Так как все факты модель успела запомнить, то такое «параллельное» извлечение знаний/выполнение задачи позволило работать с любыми сравнениями.

Самое крутое — что можно вот прямо заглянуть в трансформер и понять, решает модель задачу (научилась логике) или же просто запоминает, что ей говорят.

BY Сиолошная


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/seeallochnaya/1476

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app.
from ru


Telegram Сиолошная
FROM American