Telegram Group & Telegram Channel
​​Россия на карте мира ИИ.
Место и перспектива трёх стран в мировой ИИ-гонке.

Еще пару лет назад был смысл в применении разнообразных рейтингов для оценки положения стран в мировой ИИ-гонке (см. (1)). Теперь это уже не так. Практические успехи глубокого обучения (основное направление развития современных ИИ-систем) привели к тому, что на это направлении развития ИИ теперь приходятся 95%+ всех денег и талантов. А это значит, что как минимум на ближайшую декаду, лидеры глубокого обучения будут лидерами мировой ИИ-гонки.

А в глубоком обучении, - как в беге. Выигрывает тот, у кого лучше физическая подготовка. Конечно, есть и другие факторы (спортивный дух, настрой, воля к победе, техника …). Но без исключительно хорошей физической подготовки в гонке не выиграть.

Эквивалентом физической подготовки в современном глубоком обучении является вычислительная мощность компьютера, на котором обучаются модели со все большим числом параметров. В крупнейшей на сегодня языковой модели transformer от Microsoft число параметров составляет 530 млрд. Насколько круто возросли требования к вычислительной мощности для таких моделей видно из этого графика (2).

В результате вычислительная мощность стала главным показателем потенциала роста величины и сложности новых все более совершенных моделей глубокого обучения. И это относится как к бизнесу компаний БигТеха, так и к академическим исследовательским центрам, а также к каждой стране в целом.

Для оценки вычислительной мощности для такого рода задач обучения сверхбольших моделей создан специальный тест HPL-AI (3). Но по этому тесту пока что оценена производительность лишь 19 высокопроизводительных вычислительных комплексов мира. Поэтому для более широкого и полного сравнения самых высокопроизводительных систем для ИИ пока продолжают использовать показатель скорости вычислений с плавающей точкой (Flop/s), как это принято в рейтинге ТОР500 (4).

И по этой оценке карта мира ИИ выглядит так, как на приложенном к посту рисунке.
Совокупная вычислительная мощность каждой из стран соответствует площади прямоугольников, в свою очередь разделенных на более мелкие прямоугольники, соответствующие вычислительной мощности отдельных высокопроизводительных систем.
• Россия обведена красным пунктиром (7 систем, самая мощная из них у Яндекса – 21,5 петафлопс (10^15 Flop/s)
• Китай обведен синим пунктиром (173 системы, самая мощная – 93 петафлопс – на 26% превышает производительность всех российских систем в ТОР500).
• США обведены желтым пунктиром (149 систем, самая мощная – 149 петафлопс –в 2 раза превышает производительность всех российских систем в ТОР500).

Таково сегодняшнее место России на карте мира ИИ.

А теперь о перспективе.
На этом рисунке (5) вычислительная мощность трёх новых суперкомпьютерных систем соответствует площади трёх прямоугольников:
• Желтый – это Китай: 25 января с.г. SenseTime запустил Artificial Intelligence Data Centre (AIDC) нового поколения SenseCore; его вычислительная мощность 3740 петафлопс (в 51 раз превышает производительность всех российских систем в ТОР500)
• Синий – это США: к 2023 году Facebook (Meta) доведет вычислительную мощность своего AI supercomputer RSC до 4900 петафлопс (в 67 раз превышает производительность всех российских систем в ТОР500)
• Красный – это Россия: к 2026 планируется создать суперкомпьютер на разрабатываемых сейчас отечественных процессорах «Эльбрус-32С» производительностью в 100 петафлопс.

#ИИ #HPC #Россия #Китай #США
1 2 3 4 5



group-telegram.com/theworldisnoteasy/1438
Create:
Last Update:

​​Россия на карте мира ИИ.
Место и перспектива трёх стран в мировой ИИ-гонке.

Еще пару лет назад был смысл в применении разнообразных рейтингов для оценки положения стран в мировой ИИ-гонке (см. (1)). Теперь это уже не так. Практические успехи глубокого обучения (основное направление развития современных ИИ-систем) привели к тому, что на это направлении развития ИИ теперь приходятся 95%+ всех денег и талантов. А это значит, что как минимум на ближайшую декаду, лидеры глубокого обучения будут лидерами мировой ИИ-гонки.

А в глубоком обучении, - как в беге. Выигрывает тот, у кого лучше физическая подготовка. Конечно, есть и другие факторы (спортивный дух, настрой, воля к победе, техника …). Но без исключительно хорошей физической подготовки в гонке не выиграть.

Эквивалентом физической подготовки в современном глубоком обучении является вычислительная мощность компьютера, на котором обучаются модели со все большим числом параметров. В крупнейшей на сегодня языковой модели transformer от Microsoft число параметров составляет 530 млрд. Насколько круто возросли требования к вычислительной мощности для таких моделей видно из этого графика (2).

В результате вычислительная мощность стала главным показателем потенциала роста величины и сложности новых все более совершенных моделей глубокого обучения. И это относится как к бизнесу компаний БигТеха, так и к академическим исследовательским центрам, а также к каждой стране в целом.

Для оценки вычислительной мощности для такого рода задач обучения сверхбольших моделей создан специальный тест HPL-AI (3). Но по этому тесту пока что оценена производительность лишь 19 высокопроизводительных вычислительных комплексов мира. Поэтому для более широкого и полного сравнения самых высокопроизводительных систем для ИИ пока продолжают использовать показатель скорости вычислений с плавающей точкой (Flop/s), как это принято в рейтинге ТОР500 (4).

И по этой оценке карта мира ИИ выглядит так, как на приложенном к посту рисунке.
Совокупная вычислительная мощность каждой из стран соответствует площади прямоугольников, в свою очередь разделенных на более мелкие прямоугольники, соответствующие вычислительной мощности отдельных высокопроизводительных систем.
• Россия обведена красным пунктиром (7 систем, самая мощная из них у Яндекса – 21,5 петафлопс (10^15 Flop/s)
• Китай обведен синим пунктиром (173 системы, самая мощная – 93 петафлопс – на 26% превышает производительность всех российских систем в ТОР500).
• США обведены желтым пунктиром (149 систем, самая мощная – 149 петафлопс –в 2 раза превышает производительность всех российских систем в ТОР500).

Таково сегодняшнее место России на карте мира ИИ.

А теперь о перспективе.
На этом рисунке (5) вычислительная мощность трёх новых суперкомпьютерных систем соответствует площади трёх прямоугольников:
• Желтый – это Китай: 25 января с.г. SenseTime запустил Artificial Intelligence Data Centre (AIDC) нового поколения SenseCore; его вычислительная мощность 3740 петафлопс (в 51 раз превышает производительность всех российских систем в ТОР500)
• Синий – это США: к 2023 году Facebook (Meta) доведет вычислительную мощность своего AI supercomputer RSC до 4900 петафлопс (в 67 раз превышает производительность всех российских систем в ТОР500)
• Красный – это Россия: к 2026 планируется создать суперкомпьютер на разрабатываемых сейчас отечественных процессорах «Эльбрус-32С» производительностью в 100 петафлопс.

#ИИ #HPC #Россия #Китай #США
1 2 3 4 5

BY Малоизвестное интересное




Share with your friend now:
group-telegram.com/theworldisnoteasy/1438

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities.
from ru


Telegram Малоизвестное интересное
FROM American