Telegram Group & Telegram Channel
​​Отставание России от США в области ИИ уже колоссально.
А через несколько лет оно увеличится до трёх километров.

Так уж получилось, что прогресс в области ИИ во многом определяется наличием огромных вычислительных мощностей, требуемых для обучения гигантских нейросетей-трансформеров.
Грег Брокман (соучредитель и СТО OpenAI) формулирует это так:
«Мы думаем, что наибольшую выгоду получит тот, у кого самый большой компьютер».
Я уже демонстрировал, насколько критично наличие мощного компьютинга для обучения Больших моделей в посте «Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке».

Место России на карте мира по вычислительной мощности суперкомпьютеров более чем скромное. В списке ТОР500 суперкомпьютеров на этот год у США 149 систем, а у России 7. При этом, только одна из систем США по своей производительности превышает производительность всех российских систем (см. мой пост). Председатель оргкомитета суперкомпьютерного форума России, д.ф.м.н, член-корр. РАН Сергей Абрамов оценивает отставание России от США в области суперкомпьютинга примерно в 10 лет.

Но в области обучения больших моделей для ИИ-приложений ситуация еще хуже. Здесь мало вычислительной мощности обычных серверов и требуются специальные ускорители вычислений. Спецы по машинному обучению из Яндекса это комментируют так.
«Например, если обучать модель с нуля на обычном сервере, на это потребуется 40 лет, а если на одном GPU-ускорителе V100 — 10 лет. Но хорошая новость в том, что задача обучения легко параллелится, и если задействовать хотя бы 256 тех же самых V100, соединить их быстрым интерконнектом, то задачу можно решить всего за две недели.»

Поэтому, показатель числа GPU-ускорителей в вычислительных кластерах разных стран (общедоступных, частных и национальных) позволяет оценивать темпы развития систем ИИ в этих странах. Актуальная статистика данного показателя ведется в State of AI Report Compute Index. Состояние на 20 ноября приведено на приложенном рисунке, куда я добавил данные по пяти крупнейшим HPC-кластерам России (разбивка по public/private – моя оценка).

Из рисунка видно, что обучение больших моделей, занимающее на HPC-кластере всем известной американской компании дни и недели, будет требовать на HPC-кластере Яндекса месяцев, а то и лет.

Но это еще не вся беда. Введенные экспортные ограничения на поставку GPU-ускорителей в Россию и Китай за несколько лет многократно увеличат отрыв США в области обучения больших моделей для ИИ-приложений.
И этот отрыв будет измеряться уже не годами и даже не десятилетиями, а километрами, - как в старом советском анекдоте.
«Построили у нас самый мощный в мире компьютер и задали ему задачу, когда же наступит коммунизм. Компьютер думал, думал и выдал ответ: "Через 3 километра". На требование расшифровать столь странный ответ компьютер выдал:
— Каждая пятилетка — шаг к коммунизму.»

#ИИ #HPC #Россия #ЭкспортныйКонтроль



group-telegram.com/theworldisnoteasy/1610
Create:
Last Update:

​​Отставание России от США в области ИИ уже колоссально.
А через несколько лет оно увеличится до трёх километров.

Так уж получилось, что прогресс в области ИИ во многом определяется наличием огромных вычислительных мощностей, требуемых для обучения гигантских нейросетей-трансформеров.
Грег Брокман (соучредитель и СТО OpenAI) формулирует это так:
«Мы думаем, что наибольшую выгоду получит тот, у кого самый большой компьютер».
Я уже демонстрировал, насколько критично наличие мощного компьютинга для обучения Больших моделей в посте «Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке».

Место России на карте мира по вычислительной мощности суперкомпьютеров более чем скромное. В списке ТОР500 суперкомпьютеров на этот год у США 149 систем, а у России 7. При этом, только одна из систем США по своей производительности превышает производительность всех российских систем (см. мой пост). Председатель оргкомитета суперкомпьютерного форума России, д.ф.м.н, член-корр. РАН Сергей Абрамов оценивает отставание России от США в области суперкомпьютинга примерно в 10 лет.

Но в области обучения больших моделей для ИИ-приложений ситуация еще хуже. Здесь мало вычислительной мощности обычных серверов и требуются специальные ускорители вычислений. Спецы по машинному обучению из Яндекса это комментируют так.
«Например, если обучать модель с нуля на обычном сервере, на это потребуется 40 лет, а если на одном GPU-ускорителе V100 — 10 лет. Но хорошая новость в том, что задача обучения легко параллелится, и если задействовать хотя бы 256 тех же самых V100, соединить их быстрым интерконнектом, то задачу можно решить всего за две недели.»

Поэтому, показатель числа GPU-ускорителей в вычислительных кластерах разных стран (общедоступных, частных и национальных) позволяет оценивать темпы развития систем ИИ в этих странах. Актуальная статистика данного показателя ведется в State of AI Report Compute Index. Состояние на 20 ноября приведено на приложенном рисунке, куда я добавил данные по пяти крупнейшим HPC-кластерам России (разбивка по public/private – моя оценка).

Из рисунка видно, что обучение больших моделей, занимающее на HPC-кластере всем известной американской компании дни и недели, будет требовать на HPC-кластере Яндекса месяцев, а то и лет.

Но это еще не вся беда. Введенные экспортные ограничения на поставку GPU-ускорителей в Россию и Китай за несколько лет многократно увеличат отрыв США в области обучения больших моделей для ИИ-приложений.
И этот отрыв будет измеряться уже не годами и даже не десятилетиями, а километрами, - как в старом советском анекдоте.
«Построили у нас самый мощный в мире компьютер и задали ему задачу, когда же наступит коммунизм. Компьютер думал, думал и выдал ответ: "Через 3 километра". На требование расшифровать столь странный ответ компьютер выдал:
— Каждая пятилетка — шаг к коммунизму.»

#ИИ #HPC #Россия #ЭкспортныйКонтроль

BY Малоизвестное интересное




Share with your friend now:
group-telegram.com/theworldisnoteasy/1610

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read."
from ru


Telegram Малоизвестное интересное
FROM American