Telegram Group & Telegram Channel
In-Context Reinforcement Learning for Variable Action Spaces (ICML 2024, T-Bank AI Research и AIRI)

In-context learning - это способность больших языковых моделей (LLM) выполнять новые задачи, основываясь на нескольких примерах, предоставленных в промпте, без необходимости дополнительного обучения или файнтюнинга параметров модели. ChatGPT или LLaMa 3.1 так умеет, описываете пару примеров в запросе, и задача решается (например, задача классификации настроения).

А есть ли что-то аналогичное для  Reinforcement Learning? Например, я показываю боту несколько примеров, как играть в новую игру на PS5, и он проходит всю игру сам после этого. Ну вот такого еще особо нет, но мы (как комьюнити AI ресерчеров) к этому стремимся, пока на более простых задачах.

В 2022 году в DeepMind-е представил метод под названием Algorithm Distillation. Суть метода в том, чтобы "перегнать" алгоритмы обучения с подкреплением (RL) в нейронку на базе трансформера. Вот как это работает:

1. Сначала обычный RL алгоритм учиться решать разные задачи.
2. Вся история его обучения записывается - состояния, действия, награды.
3. Затем эту историю обучения "скармливают" трансформеру, который учится предсказывать действия агента. То есть получают условный ChatGPT, который работает на траекториях действий агента и выдает следующее действие.

Самое интересное, что получившийся трансформер может сам решать "новые задачи" обучения с подкреплением, причем иногда даже лучше, чем исходный алгоритм. И делает он это "на лету", не меняя свои веса. "Новые задачи" я взял в кавычки, потому что реальной генерализации там не было, и модель училась решать только задачи, очень похожие на те, что ей показали во время обучения (например, находить заданную клетку на 2D поле размером 9x9, как в бенчмарке DarkRoom) и список доступных действий после завершения обучения менять нельзя. То есть если бота в Doom2 учили только убегать от монстров, то стрелять по ним он уже не сможет, даже если показать ему пример такой последовательности действий.

В свежей статье "In-Context RL for Variable Action Spaces" с ICML 2024 парни улучшили метод Дипмайнда так, что бы он мог на лету адаптироваться к гораздо бóльшим изменения условий решаемой задачи. Например они позволили модели работать с новыми типами экшенов во время теста, причем их может быть в разы больше чем во время трейна. Модель по заданному контексту (история взаимодействия с окружением) понимает какой смысл имеет каждое новое действие и может их использовать.

В качестве трансформера, в который кормится контекст с последовательностями действий, ревордов и состояния мира, тут использовали архитектуру на базе TinyLLaMA. Технический трюк был в том, чтобы не учить трансформер работать с фиксированными экшенами, а представлять их на входе случайными ортогональными векторами. Таким образом новые действия всегда можно представить новыми векторами, а на выходе модели получать эмбеддинг и выбор действия делать, используя nearest neighbour вектор из доступных действий.

В этой работе, конечно, тестили только простенькие задачи вроде однокурих бандитов и движения по 2d лабиринту, где метод показывал хорошую генерализация. Ожидаю, что в будущем вы увидим и более сложные задачи, которые будут решаться через in-context learning в том или ином виде. Без этого роботам за нами будет не угнаться 🔫.

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/3059
Create:
Last Update:

In-Context Reinforcement Learning for Variable Action Spaces (ICML 2024, T-Bank AI Research и AIRI)

In-context learning - это способность больших языковых моделей (LLM) выполнять новые задачи, основываясь на нескольких примерах, предоставленных в промпте, без необходимости дополнительного обучения или файнтюнинга параметров модели. ChatGPT или LLaMa 3.1 так умеет, описываете пару примеров в запросе, и задача решается (например, задача классификации настроения).

А есть ли что-то аналогичное для  Reinforcement Learning? Например, я показываю боту несколько примеров, как играть в новую игру на PS5, и он проходит всю игру сам после этого. Ну вот такого еще особо нет, но мы (как комьюнити AI ресерчеров) к этому стремимся, пока на более простых задачах.

В 2022 году в DeepMind-е представил метод под названием Algorithm Distillation. Суть метода в том, чтобы "перегнать" алгоритмы обучения с подкреплением (RL) в нейронку на базе трансформера. Вот как это работает:

1. Сначала обычный RL алгоритм учиться решать разные задачи.
2. Вся история его обучения записывается - состояния, действия, награды.
3. Затем эту историю обучения "скармливают" трансформеру, который учится предсказывать действия агента. То есть получают условный ChatGPT, который работает на траекториях действий агента и выдает следующее действие.

Самое интересное, что получившийся трансформер может сам решать "новые задачи" обучения с подкреплением, причем иногда даже лучше, чем исходный алгоритм. И делает он это "на лету", не меняя свои веса. "Новые задачи" я взял в кавычки, потому что реальной генерализации там не было, и модель училась решать только задачи, очень похожие на те, что ей показали во время обучения (например, находить заданную клетку на 2D поле размером 9x9, как в бенчмарке DarkRoom) и список доступных действий после завершения обучения менять нельзя. То есть если бота в Doom2 учили только убегать от монстров, то стрелять по ним он уже не сможет, даже если показать ему пример такой последовательности действий.

В свежей статье "In-Context RL for Variable Action Spaces" с ICML 2024 парни улучшили метод Дипмайнда так, что бы он мог на лету адаптироваться к гораздо бóльшим изменения условий решаемой задачи. Например они позволили модели работать с новыми типами экшенов во время теста, причем их может быть в разы больше чем во время трейна. Модель по заданному контексту (история взаимодействия с окружением) понимает какой смысл имеет каждое новое действие и может их использовать.

В качестве трансформера, в который кормится контекст с последовательностями действий, ревордов и состояния мира, тут использовали архитектуру на базе TinyLLaMA. Технический трюк был в том, чтобы не учить трансформер работать с фиксированными экшенами, а представлять их на входе случайными ортогональными векторами. Таким образом новые действия всегда можно представить новыми векторами, а на выходе модели получать эмбеддинг и выбор действия делать, используя nearest neighbour вектор из доступных действий.

В этой работе, конечно, тестили только простенькие задачи вроде однокурих бандитов и движения по 2d лабиринту, где метод показывал хорошую генерализация. Ожидаю, что в будущем вы увидим и более сложные задачи, которые будут решаться через in-context learning в том или ином виде. Без этого роботам за нами будет не угнаться 🔫.

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/3059

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours.
from sa


Telegram эйай ньюз
FROM American