Notice: file_put_contents(): Write of 7929 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 4096 of 12025 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
эйай ньюз | Telegram Webview: ai_newz/3422 -
Telegram Group & Telegram Channel
GPT-2 Small теперь тренируют в полтора раза быстрее

Модель теперь тренируется менее чем восемь минут на 8xH100 - всего пару недель назад это занимало более 12 минут. Стоимость тренировки упала до 3 долларов. Давайте разберём как так вышло.

Основной архитектурный трюк - улучшенный value residual learning. Он нужен потому, что модели на более глубоких слоях фокусируются на меньшем количестве токенов, что сильно снижает эффективность глубоких слоёв. Решается это домешиванием в values n-го блока values из первого блока трансформера. То есть в attention идёт не обычная value-матрица, а взвешенное среднее текущей value-матрицы и таковой из первого блока. Параметры для усреднения обучаются отдельно для каждого трансформерного блока.

Такой же трюк с value residual learning применяют и к эмбеддингам - в каждом трансформерном блоке эмбеддинги также взвешенно усредняются, как и value-матрица.

Ещё одно изменение, которое срезало чуть больше минуты от тренировки, - отвязывание embedding-слоя от lm head. Это повысило количество параметров на 39 миллионов, но никак не повлияло на количество активных параметров и время каждого шага. Авторы репозитория сказали, что с данного момента будут ограничивать себя активными параметрами, так что мы вполне можем увидеть MoE через неделю-другую.

Из мелочей - lm head инициализируется теперь нулями, а после эмбеддинг-слоя добавили одну норму. Максимальное значение логитов теперь ограничено, по заветам Gemma 2. А ещё заметили что по дефолту в PyTorch в mixed precision режиме bfloat16 используется достаточно консервативно, поэтому вручную заменили fp32 на bfloat16 в паре мест.

Кстати, автор доказал, что они скейлятся как минимум до 1.5B, по крайней мере на нескольких миллиардах токенов. Это обнадёживает, но не означает, что все эти трюкт стоит использовать в тренировке больших моделей. Ждём, когда кто-то попробует это либо на моделях побольше (7B+), либо на бо́льшем количестве токенов (1T or bust).

Такие спидраны нужны по двум причинам. Первая — повышение эффективности претрейна больших моделей: даже если не всё масштабируется, то что-то точно будет. А наличие чёткого базового уровня помогает лучше понять эффективность каждого отдельного изменения. Вторая - повышение доступности ресёрча. Одна 3090 может натренировать такую модель примерно за 8 часов (одну ночь), без этих оптимизаций тренировка на 3090 приближалась бы к суткам, что сильно снижает скорость итерации.

https://github.com/KellerJordan/modded-nanogpt/

@ai_newz



group-telegram.com/ai_newz/3422
Create:
Last Update:

GPT-2 Small теперь тренируют в полтора раза быстрее

Модель теперь тренируется менее чем восемь минут на 8xH100 - всего пару недель назад это занимало более 12 минут. Стоимость тренировки упала до 3 долларов. Давайте разберём как так вышло.

Основной архитектурный трюк - улучшенный value residual learning. Он нужен потому, что модели на более глубоких слоях фокусируются на меньшем количестве токенов, что сильно снижает эффективность глубоких слоёв. Решается это домешиванием в values n-го блока values из первого блока трансформера. То есть в attention идёт не обычная value-матрица, а взвешенное среднее текущей value-матрицы и таковой из первого блока. Параметры для усреднения обучаются отдельно для каждого трансформерного блока.

Такой же трюк с value residual learning применяют и к эмбеддингам - в каждом трансформерном блоке эмбеддинги также взвешенно усредняются, как и value-матрица.

Ещё одно изменение, которое срезало чуть больше минуты от тренировки, - отвязывание embedding-слоя от lm head. Это повысило количество параметров на 39 миллионов, но никак не повлияло на количество активных параметров и время каждого шага. Авторы репозитория сказали, что с данного момента будут ограничивать себя активными параметрами, так что мы вполне можем увидеть MoE через неделю-другую.

Из мелочей - lm head инициализируется теперь нулями, а после эмбеддинг-слоя добавили одну норму. Максимальное значение логитов теперь ограничено, по заветам Gemma 2. А ещё заметили что по дефолту в PyTorch в mixed precision режиме bfloat16 используется достаточно консервативно, поэтому вручную заменили fp32 на bfloat16 в паре мест.

Кстати, автор доказал, что они скейлятся как минимум до 1.5B, по крайней мере на нескольких миллиардах токенов. Это обнадёживает, но не означает, что все эти трюкт стоит использовать в тренировке больших моделей. Ждём, когда кто-то попробует это либо на моделях побольше (7B+), либо на бо́льшем количестве токенов (1T or bust).

Такие спидраны нужны по двум причинам. Первая — повышение эффективности претрейна больших моделей: даже если не всё масштабируется, то что-то точно будет. А наличие чёткого базового уровня помогает лучше понять эффективность каждого отдельного изменения. Вторая - повышение доступности ресёрча. Одна 3090 может натренировать такую модель примерно за 8 часов (одну ночь), без этих оптимизаций тренировка на 3090 приближалась бы к суткам, что сильно снижает скорость итерации.

https://github.com/KellerJordan/modded-nanogpt/

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/3422

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. Telegram Messenger Blocks Navalny Bot During Russian Election "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights.
from sa


Telegram эйай ньюз
FROM American