Telegram Group & Telegram Channel
С чего начать, если планируете внедрять ИИ в компании, и почему ключевой аспект здесь - Data/AI maturity? 📊

Давайте для начала решим вопрос: почему для компаний почти всех индустрий тема данных и ИИ сейчас так важны?

Технология прогрессирует всё быстрее и быстрее. Технологические трансформации приходят волнами, и несмотря на то, что в данный момент между каждой волной проходит 3-5 лет, это расстояние в будущем будет сильно сокращаться. Каждая волна предоставляет компаниям возможность выстроить конкурентное преимущество или рискнуть возможно невозвратно отстать от конкурентов. CEO Databricks, Али Годси, предсказал, что в долгосрочной перспективе (~10 лет) во всех индустриях лидеры с конкурентным преимуществом будут ориентированы на данные и AI. Считается, что Data/AI-driven компании способны увеличить доход на 15-25%.
[Как мы обсудим в одном из будущих постов, сами по себе данные и ИИ не являются гарантией успеха - есть определенные условия, от наличия которых зависит, принесет ли ваш проект на основе данных и ИИ прибыль или будет провалом!]

Зная, зачем нужна AI-трансформация, появляется следующий вопрос – с чего начать этот процесс? Первые шаги к AI-трансформации всегда должны быть следующими:
1️⃣оценка Data/AI maturity (где компания сейчас?) и
2️⃣формирование стратегических целей C-level лидеров (до куда компания хочет дойти?).

Каждый бизнес, продукт или проект проходят через разные стадии Data/AI зрелости. Это значит, что в начинающих уровнях данные собираются ещё не системно и без особой отдачи - но со временем через вклад инженеров инфраструктура и сбор данных становятся более «зрелыми» и обеспечивают более продвинутые ML модели.

Большинство legacy компаний в данный момент находятся на уровне 1 или уровне 2 (AI interest & experimentation), как подчеркивает статистика от Accenture на скриншоте. Кроме этого legacy компании часто сильно переоценивают количество и качество своих данных, а также возможности своей инфраструктуры. Большинство компаний сегодня вообще не в состоянии продвинуться дальше уровня 3 (AI частично в проде). [Как взяться за инфраструктуру и какие аспекты важны, чтобы обеспечить эффективные продукты на основе данных и ИИ, я буду освещать в отдельном посте.]

Суть модели Data/AI maturity заключается в оценке текущих способностей компании в области данных/ИИ и обозначении потенциального дальнейшего пути в процессе ИИ-трансформации.

При этом важно понимать, что далеко не каждая компания обязана проходить все стадии Data/AI зрелости. Фундаментально важно, чтобы руководство компании формулировало vision и конкретные бизнес-цели чтобы потом в коллаборации с техническими стратегами обеспечить связь между технологической цепью и бизнес-value. Этот элемент как раз часто не присутствует в многих компаниях и приводит к разочаровывающим результатам. Целевая Data/AI maturity всегда должна быть оправдана отдачей!

В ближайшем посте я поделюсь с вами оценкой, которая поможет вам оценить зрелость данных/ИИ в вашей компании - stay tuned!

Если компания решила продвигаться по оси Data/AI maturity и инвестировать в развитие ИИ на основе стратегических решений, инвесторы и руководство фирмы будут ожидать быстрых и постепенных результатов от инициативы. Это значит, что правление компании, которая условно в первом квартале проинвестировало в Data/AI проекты, требует быть в состоянии показывать отдачу уже во втором или третьем квартале. Таковы правила игры в нынешних реалиях.

Как обеспечить это и почему в прошлом около 87% Data Science проектов в компаниях были провалом, мы обсудим также скоро!

#datapm #aipm #strategy
@ainastia
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ainastia/24
Create:
Last Update:

С чего начать, если планируете внедрять ИИ в компании, и почему ключевой аспект здесь - Data/AI maturity? 📊

Давайте для начала решим вопрос: почему для компаний почти всех индустрий тема данных и ИИ сейчас так важны?

Технология прогрессирует всё быстрее и быстрее. Технологические трансформации приходят волнами, и несмотря на то, что в данный момент между каждой волной проходит 3-5 лет, это расстояние в будущем будет сильно сокращаться. Каждая волна предоставляет компаниям возможность выстроить конкурентное преимущество или рискнуть возможно невозвратно отстать от конкурентов. CEO Databricks, Али Годси, предсказал, что в долгосрочной перспективе (~10 лет) во всех индустриях лидеры с конкурентным преимуществом будут ориентированы на данные и AI. Считается, что Data/AI-driven компании способны увеличить доход на 15-25%.
[Как мы обсудим в одном из будущих постов, сами по себе данные и ИИ не являются гарантией успеха - есть определенные условия, от наличия которых зависит, принесет ли ваш проект на основе данных и ИИ прибыль или будет провалом!]

Зная, зачем нужна AI-трансформация, появляется следующий вопрос – с чего начать этот процесс? Первые шаги к AI-трансформации всегда должны быть следующими:
1️⃣оценка Data/AI maturity (где компания сейчас?) и
2️⃣формирование стратегических целей C-level лидеров (до куда компания хочет дойти?).

Каждый бизнес, продукт или проект проходят через разные стадии Data/AI зрелости. Это значит, что в начинающих уровнях данные собираются ещё не системно и без особой отдачи - но со временем через вклад инженеров инфраструктура и сбор данных становятся более «зрелыми» и обеспечивают более продвинутые ML модели.

Большинство legacy компаний в данный момент находятся на уровне 1 или уровне 2 (AI interest & experimentation), как подчеркивает статистика от Accenture на скриншоте. Кроме этого legacy компании часто сильно переоценивают количество и качество своих данных, а также возможности своей инфраструктуры. Большинство компаний сегодня вообще не в состоянии продвинуться дальше уровня 3 (AI частично в проде). [Как взяться за инфраструктуру и какие аспекты важны, чтобы обеспечить эффективные продукты на основе данных и ИИ, я буду освещать в отдельном посте.]

Суть модели Data/AI maturity заключается в оценке текущих способностей компании в области данных/ИИ и обозначении потенциального дальнейшего пути в процессе ИИ-трансформации.

При этом важно понимать, что далеко не каждая компания обязана проходить все стадии Data/AI зрелости. Фундаментально важно, чтобы руководство компании формулировало vision и конкретные бизнес-цели чтобы потом в коллаборации с техническими стратегами обеспечить связь между технологической цепью и бизнес-value. Этот элемент как раз часто не присутствует в многих компаниях и приводит к разочаровывающим результатам. Целевая Data/AI maturity всегда должна быть оправдана отдачей!

В ближайшем посте я поделюсь с вами оценкой, которая поможет вам оценить зрелость данных/ИИ в вашей компании - stay tuned!

Если компания решила продвигаться по оси Data/AI maturity и инвестировать в развитие ИИ на основе стратегических решений, инвесторы и руководство фирмы будут ожидать быстрых и постепенных результатов от инициативы. Это значит, что правление компании, которая условно в первом квартале проинвестировало в Data/AI проекты, требует быть в состоянии показывать отдачу уже во втором или третьем квартале. Таковы правила игры в нынешних реалиях.

Как обеспечить это и почему в прошлом около 87% Data Science проектов в компаниях были провалом, мы обсудим также скоро!

#datapm #aipm #strategy
@ainastia

BY Anastasia.ai – Tech Entrepreneur in🇨🇭





Share with your friend now:
group-telegram.com/ainastia/24

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into."
from sa


Telegram Anastasia.ai – Tech Entrepreneur in🇨🇭
FROM American