Telegram Group & Telegram Channel
Про нетерпеливость 🔥

Во многих компаниях руководство резко загорелось продвигать AI с момента запуска ChatGPT и стало требовать как можно быстрее создавать AI-продукты. Желательно ещё вчера, ведь «все делают GenAI, и мы тоже хотим!» Однако тушить такой энтузиазм особенно сложно, когда приходится объяснять, что, увы, всё не так уж просто. И что, к сожалению, попытки перескочить важные этапы на пути к цели ни к чему хорошему не приведут.

Я уже писала в одном из предыдущих постов, что процесс внедрения AI в любой компании должен начинаться с оценки data/AI maturity. Это уровень прогресса компании в использовании данных, развитии соответствующих юзкейсов и их интеграции в процессы организации. Каждой компании нужно индивидуально решать, до какого уровня стоит развиваться. Нет универсального решения, подходящего для всех!

После того как вы поняли, на каком уровне зрелости находится ваша компания и до какого уровня стоит развиваться, следующий шаг — работа над data architecture. Архитектура данных должна отражать текущие и будущие потребности, которые позволят реализовать юзкейсы и вписаться в долгосрочную стратегию компании. Здесь для начала нужно понять сам бизнес и его потребности для развития. Затем эти требования необходимо отобразить в технические requirements. Это включает, например, методы сбора, хранения и обработки данных, а также аспекты безопасности. Как всегда, нет единственного правильного решения — придется взвешивать cost-benefit каждой компоненты и функциональности. Например, вы хотите real-time везде? А реально везде оно вам нужно смотря на то что это обойдется вам дороже? Ценность для бизнеса оправдывает цену?

❗️При решениях, не впадайте в shiny-objects-syndrome. Это когда чисто смотришь только на самые хайповые технологии - ведь круто же и state-of-the-art! С высокой вероятностью вы примете слишком дорогие решения, которые не соответствуют ценности для компании, а в data community хайп уже сменился на что-то другое. Никогда не ведитесь на хайп!

Все хотят AI, но компании часто слишком рано ныряют в этот пруд. Прежде чем вкладывать огромные ресурсы в AI, необходимо заложить надёжный фундамент. Это включает и не самые «sexy» темы, как data governance: обеспечение качественных данных, плавную интеграцию различных источников и понимание, какие данные где вообще находятся. Многие компании столкнулись с неудачами, начав проекты без этой основы.

Ещё на практике часто слишком рано нанимают Data Scientists для создания модных AI-решений. При этом данные разбросаны по всей инфраструктуре, нет стандартов, и их работа сводится к data engineering, используя большое количество «изоленты», чтобы хоть как-то реализовать юзкейсы на старых системах. В итоге ни ROI от юзкейса не оправдывает ожиданий, ни Data Scientist не удовлетворён своей работой.

▶️ Итог: попытка перескочить все этапы и якобы ускорить процесс создания AI-продуктов обеспечит вам прямое попадание в список провальных проектов с данными. Не ведитесь на этот путь. Всем успехов!

#datapm #aitransformation
@ainastia
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ainastia/41
Create:
Last Update:

Про нетерпеливость 🔥

Во многих компаниях руководство резко загорелось продвигать AI с момента запуска ChatGPT и стало требовать как можно быстрее создавать AI-продукты. Желательно ещё вчера, ведь «все делают GenAI, и мы тоже хотим!» Однако тушить такой энтузиазм особенно сложно, когда приходится объяснять, что, увы, всё не так уж просто. И что, к сожалению, попытки перескочить важные этапы на пути к цели ни к чему хорошему не приведут.

Я уже писала в одном из предыдущих постов, что процесс внедрения AI в любой компании должен начинаться с оценки data/AI maturity. Это уровень прогресса компании в использовании данных, развитии соответствующих юзкейсов и их интеграции в процессы организации. Каждой компании нужно индивидуально решать, до какого уровня стоит развиваться. Нет универсального решения, подходящего для всех!

После того как вы поняли, на каком уровне зрелости находится ваша компания и до какого уровня стоит развиваться, следующий шаг — работа над data architecture. Архитектура данных должна отражать текущие и будущие потребности, которые позволят реализовать юзкейсы и вписаться в долгосрочную стратегию компании. Здесь для начала нужно понять сам бизнес и его потребности для развития. Затем эти требования необходимо отобразить в технические requirements. Это включает, например, методы сбора, хранения и обработки данных, а также аспекты безопасности. Как всегда, нет единственного правильного решения — придется взвешивать cost-benefit каждой компоненты и функциональности. Например, вы хотите real-time везде? А реально везде оно вам нужно смотря на то что это обойдется вам дороже? Ценность для бизнеса оправдывает цену?

❗️При решениях, не впадайте в shiny-objects-syndrome. Это когда чисто смотришь только на самые хайповые технологии - ведь круто же и state-of-the-art! С высокой вероятностью вы примете слишком дорогие решения, которые не соответствуют ценности для компании, а в data community хайп уже сменился на что-то другое. Никогда не ведитесь на хайп!

Все хотят AI, но компании часто слишком рано ныряют в этот пруд. Прежде чем вкладывать огромные ресурсы в AI, необходимо заложить надёжный фундамент. Это включает и не самые «sexy» темы, как data governance: обеспечение качественных данных, плавную интеграцию различных источников и понимание, какие данные где вообще находятся. Многие компании столкнулись с неудачами, начав проекты без этой основы.

Ещё на практике часто слишком рано нанимают Data Scientists для создания модных AI-решений. При этом данные разбросаны по всей инфраструктуре, нет стандартов, и их работа сводится к data engineering, используя большое количество «изоленты», чтобы хоть как-то реализовать юзкейсы на старых системах. В итоге ни ROI от юзкейса не оправдывает ожиданий, ни Data Scientist не удовлетворён своей работой.

▶️ Итог: попытка перескочить все этапы и якобы ускорить процесс создания AI-продуктов обеспечит вам прямое попадание в список провальных проектов с данными. Не ведитесь на этот путь. Всем успехов!

#datapm #aitransformation
@ainastia

BY Anastasia.ai – Tech Entrepreneur in🇨🇭




Share with your friend now:
group-telegram.com/ainastia/41

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup.
from sa


Telegram Anastasia.ai – Tech Entrepreneur in🇨🇭
FROM American