Notice: file_put_contents(): Write of 2500 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 10692 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Борис опять | Telegram Webview: boris_again/1488 -
Telegram Group & Telegram Channel
# Минимальные знания Software Engineering для Data Scientist 3/3

## Map Reduce
Туториал
Чтение
Общая парадигма того, как быстро обрабатывать данные, которые не влезают в оперативную память или даже диск сервера. Не вся Биг Дата это Map Reduce. Но позволит понять основные идеи.

## Распределенные вычисления
Выбрать одно: Spark Quickstart, Dask Quickstart
Apache Spark, Dask и аналоги это инструменты, которые реализуют Map Reduce и другие парадигмы. Они делают чтобы было быстро несмотря на то, что очень много. Очень часто встречаются в требованиях на вакансии DS, MLE и не только. Apache Spark более популярный, Dask - проще и приятнее. Для ознакомления выбирайте любой.
Для закрепления: переписываем из пункта Sklearn Pipelines так, чтобы feature engineering выполнялся с помощью Spark или Dask.

## MLOps - MLFlow
Однажды люди поняли, что при создании ML проектов можно не просто творить как получится, а использовать накопленные человечеством 40+ лет знаний о разработке софта. И придумали MLOps. Это о том, как менеджерить данные, модели, эксперименты и код экспериментов. Главные компоненты MLOps: структурирование проектов, трекинг экспериментов, версионирование данных и моделей, деплой моделей. Деплой моделей мы опустим, чтобы сэкономить в голове место, потому что для минимума он не критичен. Проще всего не осваивать все по-отдельности, а разобраться в самой популярной платформе, которая их объединяет: MLFlow.

Читаем для познания основных идей:
- Версионирование данных и моделей
- Трекинг экспериментов (сразу с MLFlow примером)
Проходим туториал по MLFlow
Для закрепления: добавляем MLFlow в свой ML проект.
- Метрики эксперимента должны отправляться при обучении в MLFlow.
- После обучения модель должна сохраняться в MLFlow Model Registry.



group-telegram.com/boris_again/1488
Create:
Last Update:

# Минимальные знания Software Engineering для Data Scientist 3/3

## Map Reduce
Туториал
Чтение
Общая парадигма того, как быстро обрабатывать данные, которые не влезают в оперативную память или даже диск сервера. Не вся Биг Дата это Map Reduce. Но позволит понять основные идеи.

## Распределенные вычисления
Выбрать одно: Spark Quickstart, Dask Quickstart
Apache Spark, Dask и аналоги это инструменты, которые реализуют Map Reduce и другие парадигмы. Они делают чтобы было быстро несмотря на то, что очень много. Очень часто встречаются в требованиях на вакансии DS, MLE и не только. Apache Spark более популярный, Dask - проще и приятнее. Для ознакомления выбирайте любой.
Для закрепления: переписываем из пункта Sklearn Pipelines так, чтобы feature engineering выполнялся с помощью Spark или Dask.

## MLOps - MLFlow
Однажды люди поняли, что при создании ML проектов можно не просто творить как получится, а использовать накопленные человечеством 40+ лет знаний о разработке софта. И придумали MLOps. Это о том, как менеджерить данные, модели, эксперименты и код экспериментов. Главные компоненты MLOps: структурирование проектов, трекинг экспериментов, версионирование данных и моделей, деплой моделей. Деплой моделей мы опустим, чтобы сэкономить в голове место, потому что для минимума он не критичен. Проще всего не осваивать все по-отдельности, а разобраться в самой популярной платформе, которая их объединяет: MLFlow.

Читаем для познания основных идей:
- Версионирование данных и моделей
- Трекинг экспериментов (сразу с MLFlow примером)
Проходим туториал по MLFlow
Для закрепления: добавляем MLFlow в свой ML проект.
- Метрики эксперимента должны отправляться при обучении в MLFlow.
- После обучения модель должна сохраняться в MLFlow Model Registry.

BY Борис опять


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/boris_again/1488

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare.
from sa


Telegram Борис опять
FROM American