Telegram Group & Telegram Channel
Антропоморфизация больших языковых моделей

Не очень люблю говорить в компаниях про LLMs (Large Language Models: GPT, ChatGPT, LaMDA ...), потому что почти сразу тезис "скоро нейронные сети обретут сознание и всех поработят" становится основным. Я в таких случаях, кратко рассказываю как устроены модели. О том, что генеративные модели по принципу работают как автодополнение на телефоне. О том, что сети показали много текстов и во время обучения задача была в предсказании следующего слова при условии предыдущих. И о том, что обретение сознания не совсем верный тезис в подобном контексте.

Однако, в медиа постоянно выходят статьи с заголовками типа:
1. The Google engineer who thinks the company’s AI has come to life
2. 'I want to be alive': Has Microsoft's AI chatbot become sentient?

Давно искал что-то осмысленное про то, как люди наделяют человеческими свойствами языковые модели. И вот мне на глаза попалась статья Talking About Large Language Models от профессора Murray Shanahan из Imperial College

Ключевые тезисы такие:

1. Основной принцип работы LLM: генерация статистически вероятных продолжений последовательностей слов.
2. Многие задачи, для решения которых вроде бы нужен разум человека, можно свести к задаче предсказания следующего токена (слова).
3. Люди часто прибегают к антропормфизации (очеловечиванию) разных объектов для упрощения сложных процессов. (“мой телефон думает, что мы в другом месте.”) Это называется Intentional Stance.
4. Исследователи в своих статьях активно используют слова "знает", "верит", "думает" по отношению к LLM, подразумевая конкретные процессы вычислений.
5. Иногда видя слова "знает", "верит", "думает" люди могут начать ложно ожидать большего поведения, чем такие модели имеют.

В статье мне понравилось, что последовательно разбираются аргументы почему эти слова не очень корректно использовать в привычном их значении даже если модели могут:
• отвечать на вопросы которых не было в трейне
• ходить в другие системы
• отвечать по данным другой модальности (например, изобржаниям)
• выполнять задачи в реальном мире с помощью манипуляторов

Кому лень читать всю статью, сделал более подробный пересказ.
https://telegra.ph/Konspekt-stati-Talking-About-Large-Language-Models-02-19



group-telegram.com/c0mmit/41
Create:
Last Update:

Антропоморфизация больших языковых моделей

Не очень люблю говорить в компаниях про LLMs (Large Language Models: GPT, ChatGPT, LaMDA ...), потому что почти сразу тезис "скоро нейронные сети обретут сознание и всех поработят" становится основным. Я в таких случаях, кратко рассказываю как устроены модели. О том, что генеративные модели по принципу работают как автодополнение на телефоне. О том, что сети показали много текстов и во время обучения задача была в предсказании следующего слова при условии предыдущих. И о том, что обретение сознания не совсем верный тезис в подобном контексте.

Однако, в медиа постоянно выходят статьи с заголовками типа:
1. The Google engineer who thinks the company’s AI has come to life
2. 'I want to be alive': Has Microsoft's AI chatbot become sentient?

Давно искал что-то осмысленное про то, как люди наделяют человеческими свойствами языковые модели. И вот мне на глаза попалась статья Talking About Large Language Models от профессора Murray Shanahan из Imperial College

Ключевые тезисы такие:

1. Основной принцип работы LLM: генерация статистически вероятных продолжений последовательностей слов.
2. Многие задачи, для решения которых вроде бы нужен разум человека, можно свести к задаче предсказания следующего токена (слова).
3. Люди часто прибегают к антропормфизации (очеловечиванию) разных объектов для упрощения сложных процессов. (“мой телефон думает, что мы в другом месте.”) Это называется Intentional Stance.
4. Исследователи в своих статьях активно используют слова "знает", "верит", "думает" по отношению к LLM, подразумевая конкретные процессы вычислений.
5. Иногда видя слова "знает", "верит", "думает" люди могут начать ложно ожидать большего поведения, чем такие модели имеют.

В статье мне понравилось, что последовательно разбираются аргументы почему эти слова не очень корректно использовать в привычном их значении даже если модели могут:
• отвечать на вопросы которых не было в трейне
• ходить в другие системы
• отвечать по данным другой модальности (например, изобржаниям)
• выполнять задачи в реальном мире с помощью манипуляторов

Кому лень читать всю статью, сделал более подробный пересказ.
https://telegra.ph/Konspekt-stati-Talking-About-Large-Language-Models-02-19

BY commit history


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/c0mmit/41

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts.
from sa


Telegram commit history
FROM American