Telegram Group & Telegram Channel
Классы алгоритмической сложности для трансформеров

Сначала расскажу про более объёмную статью, которую мы выпустили на этой неделе. Мы пытаемся дать теоретические оценки того, как эффективно трансформеры решают те или иные алгоритмические задачи. Алгоритмы – это такой ключик к пониманию способностей моделей рассуждать.

Про трансформерные модели мы знаем довольно много: они Тюринг-полные – правда, при polylog-числе слоёв, а при константной глубине они ограничены классом TC0. Это всё, конечно, очень интересно 😐, но хочется изучать трансформеры в более реалистичных сценариях.

Вот тут на сцену выходим мы🤴! В статье мы анализируем девять графовых алгоритмов 👥, которые трансформеры решают в трёх разных режимах параметров. Под параметрами в статье понимаем ширину слоя m, глубину сети L, и аналог chain-of-though токенов, которые позволяют модели покряхтеть над задачкой подольше. 🤔

Внимательный подпищеки заметили 🧐, что алгоритмы мы рассматриваем только графовые. Не серчайте – это всё ради науки! Сложность графовых задач легко варьировать, к тому же, существует сильно больше классов задач, чем для операций с символьными манипуляцями.

Совсем простые задачи 😛, например, как подсчет узлов или рёбер, могут быть решены трансформерами глубины один с шириной log 𝐍. Трансформеры также могут выполнять параллельные алгоритмы - мы нашли три задачи, которые могут быть эффективно решены с помощью трансформеров глубины log 𝐍.

А ещё на графах мы можем сравнить трансформеры с графовыми нейросетями. Теоретически мы показываем случаи, где трансформерам нужно меньше вычислений для решения разных задач, и на практике показываем, как с некоторыми алгоритмическими задачами трансформеры справляются лучше GNNок. Да, практическая часть в статье тоже весёлая – мы попробовали посравнивать трансформеры, натренированные для конкретной задачи с файнтьюненными LLMками! А получилось – читать продолжение в источнике…

Статья получилась жирная 🥁 на теоремы и эмпирику, но, надеюсь, кому-нибудь да понравится.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/171
Create:
Last Update:

Классы алгоритмической сложности для трансформеров

Сначала расскажу про более объёмную статью, которую мы выпустили на этой неделе. Мы пытаемся дать теоретические оценки того, как эффективно трансформеры решают те или иные алгоритмические задачи. Алгоритмы – это такой ключик к пониманию способностей моделей рассуждать.

Про трансформерные модели мы знаем довольно много: они Тюринг-полные – правда, при polylog-числе слоёв, а при константной глубине они ограничены классом TC0. Это всё, конечно, очень интересно 😐, но хочется изучать трансформеры в более реалистичных сценариях.

Вот тут на сцену выходим мы🤴! В статье мы анализируем девять графовых алгоритмов 👥, которые трансформеры решают в трёх разных режимах параметров. Под параметрами в статье понимаем ширину слоя m, глубину сети L, и аналог chain-of-though токенов, которые позволяют модели покряхтеть над задачкой подольше. 🤔

Внимательный подпищеки заметили 🧐, что алгоритмы мы рассматриваем только графовые. Не серчайте – это всё ради науки! Сложность графовых задач легко варьировать, к тому же, существует сильно больше классов задач, чем для операций с символьными манипуляцями.

Совсем простые задачи 😛, например, как подсчет узлов или рёбер, могут быть решены трансформерами глубины один с шириной log 𝐍. Трансформеры также могут выполнять параллельные алгоритмы - мы нашли три задачи, которые могут быть эффективно решены с помощью трансформеров глубины log 𝐍.

А ещё на графах мы можем сравнить трансформеры с графовыми нейросетями. Теоретически мы показываем случаи, где трансформерам нужно меньше вычислений для решения разных задач, и на практике показываем, как с некоторыми алгоритмическими задачами трансформеры справляются лучше GNNок. Да, практическая часть в статье тоже весёлая – мы попробовали посравнивать трансформеры, натренированные для конкретной задачи с файнтьюненными LLMками! А получилось – читать продолжение в источнике…

Статья получилась жирная 🥁 на теоремы и эмпирику, но, надеюсь, кому-нибудь да понравится.

BY epsilon correct




Share with your friend now:
group-telegram.com/epsiloncorrect/171

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment.
from sa


Telegram epsilon correct
FROM American