Telegram Group & Telegram Channel
G-RAG: готовим графы знаний правильно

Вторая статья, вышедшая на той неделе – про retrieval-augmented generation (RAG). Конечно же, со вкусом графов – куда ж без них?

RAG – это такой лейкопластырь, которым мы залепливаем проблему контекста в языковых моделях. Поиск мы умеем делать довольно неплохо, поэтому давайте-ка прикрутим поиск к LLMкам и будем всем счастье – ну, то есть релевантные ответы, актуальная информация, вот это вот всё.

При этом всём, information retrieval (IR), заточенный на людей, для LLMок подойдёт как минимум неидеально: люди читают первые пару заголовков, а LLMки могут прожевать десяток-другой статей (если не Gemini 1.5 с миллионой длиной контекста, конечно).

В IR популярен подход с реранкингом, когда мы простой моделью достаём какое-то количество наиболее релевантных документов, и потом более сложной моделью их ранжируем заново. В нашем случае, хочется, чтобы LLMка увидела разнообразные факты про запрос юзера в наиболее релевантных документах. С этим нам помогут графы знаний.

Тут нужно лирическое отступление на тему графов знаний. Я эту дедовскую 👴 идею про идеально точное и полное описание сущностей отрицаю всей душой и сердцем. Ни у кого в мире не получилось построить корректно работающий граф знаний, и полагаться на одну статическую структуру для такой динамической задачи, как вопросы в свободной форме – тотальный харам. Поэтому вместо статического графа у нас динамический, который мы на этапе запроса строим по документам, которые наш ретривер вытащил на первом этапе. Это можно делать очень быстро, потому что графы по каждому документу мы можем посчитать заранее, а на этапе запроса их слепить вместе. ☺️

Этот граф мы преобразуем в граф над документами, и уже на этом графе делаем быстрый инференс графовой сетки, которая и выберет финальные документы для LLMки. Получился такой прототип для LLM-поисковика. Получившийся пайплайн выбивает существенно выше по бенчмаркам, чем существующие решения, особенно плохи чистые LLMки без RAGов. Главное в этих делах – не переесть камней.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/172
Create:
Last Update:

G-RAG: готовим графы знаний правильно

Вторая статья, вышедшая на той неделе – про retrieval-augmented generation (RAG). Конечно же, со вкусом графов – куда ж без них?

RAG – это такой лейкопластырь, которым мы залепливаем проблему контекста в языковых моделях. Поиск мы умеем делать довольно неплохо, поэтому давайте-ка прикрутим поиск к LLMкам и будем всем счастье – ну, то есть релевантные ответы, актуальная информация, вот это вот всё.

При этом всём, information retrieval (IR), заточенный на людей, для LLMок подойдёт как минимум неидеально: люди читают первые пару заголовков, а LLMки могут прожевать десяток-другой статей (если не Gemini 1.5 с миллионой длиной контекста, конечно).

В IR популярен подход с реранкингом, когда мы простой моделью достаём какое-то количество наиболее релевантных документов, и потом более сложной моделью их ранжируем заново. В нашем случае, хочется, чтобы LLMка увидела разнообразные факты про запрос юзера в наиболее релевантных документах. С этим нам помогут графы знаний.

Тут нужно лирическое отступление на тему графов знаний. Я эту дедовскую 👴 идею про идеально точное и полное описание сущностей отрицаю всей душой и сердцем. Ни у кого в мире не получилось построить корректно работающий граф знаний, и полагаться на одну статическую структуру для такой динамической задачи, как вопросы в свободной форме – тотальный харам. Поэтому вместо статического графа у нас динамический, который мы на этапе запроса строим по документам, которые наш ретривер вытащил на первом этапе. Это можно делать очень быстро, потому что графы по каждому документу мы можем посчитать заранее, а на этапе запроса их слепить вместе. ☺️

Этот граф мы преобразуем в граф над документами, и уже на этом графе делаем быстрый инференс графовой сетки, которая и выберет финальные документы для LLMки. Получился такой прототип для LLM-поисковика. Получившийся пайплайн выбивает существенно выше по бенчмаркам, чем существующие решения, особенно плохи чистые LLMки без RAGов. Главное в этих делах – не переесть камней.

BY epsilon correct




Share with your friend now:
group-telegram.com/epsiloncorrect/172

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations.
from sa


Telegram epsilon correct
FROM American