Telegram Group & Telegram Channel
🔷 تخمین، احتمال، نرخ‌های پایه

▪️به این سؤال توجه کنید:
بیماری‌ مشخصی به‌طور میان‌گین یک نفر از هر هزار نفر را مبتلا می‌کند. برای تشخیص این بیماری آزمایشی پزشکی طراحی شده است. آزمایش در پنج درصد موارد خطا دارد، به این معنی که نتیجه‌اش برای شخصی که بیمار نیست مثبت می‌شود. فرض کنید به شخصی برمی‌خورید که نتیجه‌ٔ آزمایش‌اش مثبت است. شما چیزی در مورد بیماری و علائم آن نمی‌دانید و فقط بر مبنای نتیجهٔ‌ آزمایش و اطلاعات آماری قضاوت می‌کنید. چند درصد احتمال دارد که این شخص واقعاً بیمار باشد؟ *

▪️بسیاری از ما خواسته یا ناخواسته بر اساس اطلاعات موجود احتمال وقوع پدیده‌ها را تخمین می‌زنیم ولی خیلی‌ وقت‌ها بخش مهمی از اطلاعات را نادیده می‌گیریم. مثلاً در پرسش بالا اغلب به جمله‌ٔ اول توجه نمی‌شود و پاسخی که داده می‌‌شود چیزی در حدود ۹۵ درصد است. درحالی‌که پاسخ درست حدود ۲ درصد است! بله، درست است. در این مثال فقط ۲ درصد احتمال دارد که شخصی که جواب آزمایش‌اش مثبت است واقعاً بیمار باشد.

پاسخ این سؤال را می‌توان به سادگی با استفاده از قاعده‌ی بِیز (Bayes' rule) در نظریه‌ٔ احتمال پیدا کرد ولی حتی کسانی که با نظریه‌ٔ‌ احتمال آشنا نیستند هم با کمی تأمل و دقت به جمله‌ٔ اول سؤال می‌توانند جواب درست را پیدا کنند. اطلاعات جمله‌ٔ اول (ابتلای یک نفر از هر هزار نفر به بیماری) در نظریه‌ٔ احتمال نرخ پایه (base rate) نامیده می‌شود. دانیل کانمن و آموس تورسکی در دهه‌ٔ ۱۹۷۰ میلادی نشان دادند که بی‌توجهی به نرخ‌های پایه می‌تواند به‌ تخمین‌هایی بسیار متفاوت با واقعیت بینجامد.

به‌عنوان یک مثال دیگر فرض کنید یک الگوریتم تشخیص چهره، با استفاده از تصاویر ثبت شده در دوربین مدار بسته، چهره‌ٔ شخصی را به‌عنوان یک تروریست شناسایی می‌کند. اگر احتمال خطای الگوریتم کمتر از یک درصد باشد، چه‌قدر احتمال دارد که شخص شناسایی شده واقعاً تروریست باشد؟ نرخ پایه در این مثال چیست؟ 

▪️تخمین نادرست یا کم‌دقت می‌تواند بسیار هزینه‌ساز باشد. بهتر نیست کمی بیشتر مراقب حدس‌ها و برآوردهایمان باشیم؟ 

* این مثال را می‌توان در مراجع متعددی پیدا کرد که سرچشمهٔ همه‌ٔ آن‌ها مقالهٔ زیر است. نگاهی به آن خالی از لطف نیست:

Amos Tversky  and Daniel Kahneman, “Evidential Impact of Base Rates” (1981).

@k1samani_channel



group-telegram.com/k1samani_channel/55
Create:
Last Update:

🔷 تخمین، احتمال، نرخ‌های پایه

▪️به این سؤال توجه کنید:
بیماری‌ مشخصی به‌طور میان‌گین یک نفر از هر هزار نفر را مبتلا می‌کند. برای تشخیص این بیماری آزمایشی پزشکی طراحی شده است. آزمایش در پنج درصد موارد خطا دارد، به این معنی که نتیجه‌اش برای شخصی که بیمار نیست مثبت می‌شود. فرض کنید به شخصی برمی‌خورید که نتیجه‌ٔ آزمایش‌اش مثبت است. شما چیزی در مورد بیماری و علائم آن نمی‌دانید و فقط بر مبنای نتیجهٔ‌ آزمایش و اطلاعات آماری قضاوت می‌کنید. چند درصد احتمال دارد که این شخص واقعاً بیمار باشد؟ *

▪️بسیاری از ما خواسته یا ناخواسته بر اساس اطلاعات موجود احتمال وقوع پدیده‌ها را تخمین می‌زنیم ولی خیلی‌ وقت‌ها بخش مهمی از اطلاعات را نادیده می‌گیریم. مثلاً در پرسش بالا اغلب به جمله‌ٔ اول توجه نمی‌شود و پاسخی که داده می‌‌شود چیزی در حدود ۹۵ درصد است. درحالی‌که پاسخ درست حدود ۲ درصد است! بله، درست است. در این مثال فقط ۲ درصد احتمال دارد که شخصی که جواب آزمایش‌اش مثبت است واقعاً بیمار باشد.

پاسخ این سؤال را می‌توان به سادگی با استفاده از قاعده‌ی بِیز (Bayes' rule) در نظریه‌ٔ احتمال پیدا کرد ولی حتی کسانی که با نظریه‌ٔ‌ احتمال آشنا نیستند هم با کمی تأمل و دقت به جمله‌ٔ اول سؤال می‌توانند جواب درست را پیدا کنند. اطلاعات جمله‌ٔ اول (ابتلای یک نفر از هر هزار نفر به بیماری) در نظریه‌ٔ احتمال نرخ پایه (base rate) نامیده می‌شود. دانیل کانمن و آموس تورسکی در دهه‌ٔ ۱۹۷۰ میلادی نشان دادند که بی‌توجهی به نرخ‌های پایه می‌تواند به‌ تخمین‌هایی بسیار متفاوت با واقعیت بینجامد.

به‌عنوان یک مثال دیگر فرض کنید یک الگوریتم تشخیص چهره، با استفاده از تصاویر ثبت شده در دوربین مدار بسته، چهره‌ٔ شخصی را به‌عنوان یک تروریست شناسایی می‌کند. اگر احتمال خطای الگوریتم کمتر از یک درصد باشد، چه‌قدر احتمال دارد که شخص شناسایی شده واقعاً تروریست باشد؟ نرخ پایه در این مثال چیست؟ 

▪️تخمین نادرست یا کم‌دقت می‌تواند بسیار هزینه‌ساز باشد. بهتر نیست کمی بیشتر مراقب حدس‌ها و برآوردهایمان باشیم؟ 

* این مثال را می‌توان در مراجع متعددی پیدا کرد که سرچشمهٔ همه‌ٔ آن‌ها مقالهٔ زیر است. نگاهی به آن خالی از لطف نیست:

Amos Tversky  and Daniel Kahneman, “Evidential Impact of Base Rates” (1981).

@k1samani_channel

BY دِرَنـــگ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/k1samani_channel/55

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. Some privacy experts say Telegram is not secure enough Despite Telegram's origins, its approach to users' security has privacy advocates worried. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth."
from sa


Telegram دِرَنـــگ
FROM American