Notice: file_put_contents(): Write of 731 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 12288 of 13019 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
The Layer | Telegram Webview: layercv/135 -
Telegram Group & Telegram Channel
🚀 Опубликовали наш новый препринт: GigaCheck: Detecting LLM-generated Content 📄
Технология та же, что и в продукте, но перенесли на открытые модели и англоязычные тексты.

TL;DR Вынесли вообще всех.

Давайте по деталям.
В статье мы выделяем две подзадачи: определяем, написан ли текст человеком или генеративной моделью (LLM) и находим конкретные AI-интервалы 🤖

🔍 Первая задача — классификация текста — решается с помощью файнтюна LLM модели общего назначения. В исследовании мы использовали высокопроизводительную Mistral-7B, которая превосходит другие модели аналогичного размера во многих задачах.

🔎 Вторая задача — детекция AI-интервалов — решается нами с помощью модели DN-DAB-DETR, адаптированной из области компьютерного зрения. DETR модель обучается на фичах от зафайнтюненной LLM, однако, если данных для обучения LLM на классификацию недостаточно, используем фичи от исходной Mistral-7B-v0.3

Для подтверждения эффективности методов мы провели обширные эксперименты на различных датасетах. На пяти классификационных наборах данных обученные нами модели продемонстрировали SOTA результаты, а также показали высокие метрики в out-of-distribution экспериментах, работая с данными из доменов, отличающихся от встречавшихся в обучении, или от генераторов, не участвующих в создании обучающей выборки. Наша модель также успешно обошла Paraphrasing Attack🛡️

📊 Для оценки DETR детектора мы использовали четыре набора данных: RoFT, RoFT-chatgpt, CoAuthor и TriBERT.
Первые два датасета ориентированы на поиск границы между частями текста, написанными человеком и AI, второй содержит произвольное количество интервалов для каждого текста, третий — один или два интервала.
📝 Для корректного сравнения с другими работами мы переводим наши предсказания из интервального вида к предложениям.
🎉 Во всех экспериментах, включая out-of-domain, предложенный нами подход показал выдающиеся результаты!
До нас ещё никто не применял Detection Transformer для анализа сгенерированного текстового контента.

CV-шники идут в NLP 😎

Мы надеемся, что наш метод вдохновит будущих исследователей! 📈

📖 Статья тут
🌐 Лендинг тут
🤖 Телеграм-бот тут



group-telegram.com/layercv/135
Create:
Last Update:

🚀 Опубликовали наш новый препринт: GigaCheck: Detecting LLM-generated Content 📄
Технология та же, что и в продукте, но перенесли на открытые модели и англоязычные тексты.

TL;DR Вынесли вообще всех.

Давайте по деталям.
В статье мы выделяем две подзадачи: определяем, написан ли текст человеком или генеративной моделью (LLM) и находим конкретные AI-интервалы 🤖

🔍 Первая задача — классификация текста — решается с помощью файнтюна LLM модели общего назначения. В исследовании мы использовали высокопроизводительную Mistral-7B, которая превосходит другие модели аналогичного размера во многих задачах.

🔎 Вторая задача — детекция AI-интервалов — решается нами с помощью модели DN-DAB-DETR, адаптированной из области компьютерного зрения. DETR модель обучается на фичах от зафайнтюненной LLM, однако, если данных для обучения LLM на классификацию недостаточно, используем фичи от исходной Mistral-7B-v0.3

Для подтверждения эффективности методов мы провели обширные эксперименты на различных датасетах. На пяти классификационных наборах данных обученные нами модели продемонстрировали SOTA результаты, а также показали высокие метрики в out-of-distribution экспериментах, работая с данными из доменов, отличающихся от встречавшихся в обучении, или от генераторов, не участвующих в создании обучающей выборки. Наша модель также успешно обошла Paraphrasing Attack🛡️

📊 Для оценки DETR детектора мы использовали четыре набора данных: RoFT, RoFT-chatgpt, CoAuthor и TriBERT.
Первые два датасета ориентированы на поиск границы между частями текста, написанными человеком и AI, второй содержит произвольное количество интервалов для каждого текста, третий — один или два интервала.
📝 Для корректного сравнения с другими работами мы переводим наши предсказания из интервального вида к предложениям.
🎉 Во всех экспериментах, включая out-of-domain, предложенный нами подход показал выдающиеся результаты!
До нас ещё никто не применял Detection Transformer для анализа сгенерированного текстового контента.

CV-шники идут в NLP 😎

Мы надеемся, что наш метод вдохновит будущих исследователей! 📈

📖 Статья тут
🌐 Лендинг тут
🤖 Телеграм-бот тут

BY The Layer


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/layercv/135

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS.
from sa


Telegram The Layer
FROM American