Telegram Group & Telegram Channel
В исходной плоскости (x,y) действует радиальная сила, поэтому вектор ускорения (x’’,y’’) пропорционален радиус-вектору r=(x,y) — с коэффициентом
h=-GM/r^3
(в знаменателе куб, потому что нам нужен единичный вектор в нужном направлении, а это отношение r/r, вот ещё одна степень r в знаменателе и появляется).

Поэтому
x’’ = hx
y’’ = hy.

Если бы радиус r был линейной комбинацией x и y, то для его второй производной было бы такое же соотношение, и центр даже двигать бы не пришлось. Но — давайте зафиксируем единичный вектор b=(b_x,b_y), в начальный момент направленный по радиусу, и рассмотрим линейную функцию (r,b) = b_x x + b_y y.

Эта линейная функция в первом порядке совпадает с радиусом r, а на радиальном луче совпадает с ним совсем. Так что их вторые производные будут отличаться только за счёт вклада от перпендикулярного радиусу движения точки :

r’’= b_x x’’ + b_y y’’ + (вклад от перпендикулярного движения)
= hr + (вклад от перпендикулярного движения)

Если v — это нормальная к радиусу компонента скорости, то этот вклад это
v^2 * (вторую производную радиуса при движении по касательной к окружности),
или, что то же самое, вторая производная при движении по касательной к окружности со скоростью v.
И вот сейчас момент импульса (секториальная скорость) и вылезет — ведь ровно за него/неё перпендикулярная радиусу скорость v и отвечает!



group-telegram.com/mathtabletalks/4586
Create:
Last Update:

В исходной плоскости (x,y) действует радиальная сила, поэтому вектор ускорения (x’’,y’’) пропорционален радиус-вектору r=(x,y) — с коэффициентом
h=-GM/r^3
(в знаменателе куб, потому что нам нужен единичный вектор в нужном направлении, а это отношение r/r, вот ещё одна степень r в знаменателе и появляется).

Поэтому
x’’ = hx
y’’ = hy.

Если бы радиус r был линейной комбинацией x и y, то для его второй производной было бы такое же соотношение, и центр даже двигать бы не пришлось. Но — давайте зафиксируем единичный вектор b=(b_x,b_y), в начальный момент направленный по радиусу, и рассмотрим линейную функцию (r,b) = b_x x + b_y y.

Эта линейная функция в первом порядке совпадает с радиусом r, а на радиальном луче совпадает с ним совсем. Так что их вторые производные будут отличаться только за счёт вклада от перпендикулярного радиусу движения точки :

r’’= b_x x’’ + b_y y’’ + (вклад от перпендикулярного движения)
= hr + (вклад от перпендикулярного движения)

Если v — это нормальная к радиусу компонента скорости, то этот вклад это
v^2 * (вторую производную радиуса при движении по касательной к окружности),
или, что то же самое, вторая производная при движении по касательной к окружности со скоростью v.
И вот сейчас момент импульса (секториальная скорость) и вылезет — ведь ровно за него/неё перпендикулярная радиусу скорость v и отвечает!

BY Математические байки


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/mathtabletalks/4586

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Telegram Messenger Blocks Navalny Bot During Russian Election "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation.
from sa


Telegram Математические байки
FROM American