Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ml_cabin_destroyers/-12-13-): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Раскатываем ML кабины | Telegram Webview: ml_cabin_destroyers/13 -
Telegram Group & Telegram Channel
Про изменение найма в рекомендательных системах🐸

Уже 2.5 года я занимаюсь рекомендательными системами и очень интересно наблюдать как меняестя найм за такое короткое время.
Вот немного временных отсечек:

Весна 2022
Работал в сбере в классическом мл и хочу менять работу. Хорошо рассказываю про бустинги, обрабтоку данных. В это время закончил первый семестр MADE и уверенно чувсвтую себя на собеседованиях по лайвкодингу и NLP.
По итогу 2 месяцев поиска работы и какого-то неимоверного количества собеседований получаю офферы в:
- ДомКлик - рекомендации
- Озон - рекомендации
- Еаптека - классический мл
- Яндекс - команда занималась рекламой вроде, деталей не помню, но помню, что лид не понравился и решил не рассматривать

При этом мои знания по рекомендательным системам около нуля😄

Сентябрь 2023
Уже накопил 1.5 года опыта работы с рекомендательными системами, уверенно себя чувствовал в около млопсовом направлении. И в целом искал вакансии по рексису. Вот что получилось через 2 месяца:
- WB - рекомендации + mlops
- Циан - классик мл
- Яндекс плюс - классик мл
- Дзен - рекомендации
- X5 - классический мл
- Rubbles - классический мл

Самое смешное, что про АЛС или как работает pairwise boosting я очень плохо знал и мое математическое понимание рекомендаций заканчивалось на map и ndcg. Важно заметить, что понимание устройства рексиса озона у меня было хорошее с точки зрения архитектуры, хоть я и не мог объяснить большую часть алгоритмов.

Здесь все секции по рекомендациям без проблем проходились, кроме Т-Банка. Там меня жестко разбомбили вопросами про архитектуру ALS, работу бустингов и нейро подходы. И там я понял, что мне еще очень много нужно выучить.

Декабрь 2024
Я не меняю работу, но мои ученики активно ходят по собеседованиям и вот, что я наблюдаю:
Намного жестче спрашивают про архитектуру рекомендаций. Спрашивают, что под капотом у разных методов, какие методы сам знаешь. Смотрят на то, насколько хорошо умеешь дизайнить рексис (это и раньше спрашивали, но поменьше)
И вакансий как будто стало сильно больше, чем раньше.

Видно что рынок рексиса растет и со временем критерии найма тоже растут. Будем смотреть, что будет дальше🙃

PS прикладываю таблички по компаниям, где проходил собесы в 2022 и 2023 годах

Раскатываем ML кабины



group-telegram.com/ml_cabin_destroyers/13
Create:
Last Update:

Про изменение найма в рекомендательных системах🐸

Уже 2.5 года я занимаюсь рекомендательными системами и очень интересно наблюдать как меняестя найм за такое короткое время.
Вот немного временных отсечек:

Весна 2022
Работал в сбере в классическом мл и хочу менять работу. Хорошо рассказываю про бустинги, обрабтоку данных. В это время закончил первый семестр MADE и уверенно чувсвтую себя на собеседованиях по лайвкодингу и NLP.
По итогу 2 месяцев поиска работы и какого-то неимоверного количества собеседований получаю офферы в:
- ДомКлик - рекомендации
- Озон - рекомендации
- Еаптека - классический мл
- Яндекс - команда занималась рекламой вроде, деталей не помню, но помню, что лид не понравился и решил не рассматривать

При этом мои знания по рекомендательным системам около нуля😄

Сентябрь 2023
Уже накопил 1.5 года опыта работы с рекомендательными системами, уверенно себя чувствовал в около млопсовом направлении. И в целом искал вакансии по рексису. Вот что получилось через 2 месяца:
- WB - рекомендации + mlops
- Циан - классик мл
- Яндекс плюс - классик мл
- Дзен - рекомендации
- X5 - классический мл
- Rubbles - классический мл

Самое смешное, что про АЛС или как работает pairwise boosting я очень плохо знал и мое математическое понимание рекомендаций заканчивалось на map и ndcg. Важно заметить, что понимание устройства рексиса озона у меня было хорошее с точки зрения архитектуры, хоть я и не мог объяснить большую часть алгоритмов.

Здесь все секции по рекомендациям без проблем проходились, кроме Т-Банка. Там меня жестко разбомбили вопросами про архитектуру ALS, работу бустингов и нейро подходы. И там я понял, что мне еще очень много нужно выучить.

Декабрь 2024
Я не меняю работу, но мои ученики активно ходят по собеседованиям и вот, что я наблюдаю:
Намного жестче спрашивают про архитектуру рекомендаций. Спрашивают, что под капотом у разных методов, какие методы сам знаешь. Смотрят на то, насколько хорошо умеешь дизайнить рексис (это и раньше спрашивали, но поменьше)
И вакансий как будто стало сильно больше, чем раньше.

Видно что рынок рексиса растет и со временем критерии найма тоже растут. Будем смотреть, что будет дальше🙃

PS прикладываю таблички по компаниям, где проходил собесы в 2022 и 2023 годах

Раскатываем ML кабины

BY Раскатываем ML кабины





Share with your friend now:
group-telegram.com/ml_cabin_destroyers/13

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

He adds: "Telegram has become my primary news source." "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. 'Wild West' The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram.
from sa


Telegram Раскатываем ML кабины
FROM American