Telegram Group & Telegram Channel
Cобесы в Яндекс и Амазон и куча советов от непрошедшего
#career #interviews #fail #tips

Как известно, у самурая нет оффера, у него есть только собеседования. Я тут писал уже, что фэйлов набралось немало https://www.group-telegram.com/sa/new_yorko_times.com/9, так вот набралось еще. Про чужие фэйлы весело слушать, так что приятных вам букв! А чтоб пост полезней был, опишу подробней некоторые собесы и как я к ним готовился. Да, в итоге я ни в Яндексе, ни в Амазоне, но советы дам, в конце концов, успел родиться в стране советов.

Начну с Яндекса. Я тут хвалил https://www.group-telegram.com/sa/new_yorko_times.com/86 первый собес, где надо было дебажить код трансформера. Второй собес – литкод – я предсказуемо не прошел. Медиум-задачка была наподобие MaxStack – написать свой стек, у которого операции push, pop и max – все за O(1). Я все сделал, но типа как многовато подсказок было да неправильно в другой задаче ответил про то, как конкатенация строк в питоне работает. Кто умеет сходу задачки типа MaxStack решать – хорошие новости, скорее вы готовы к литкоду в Я. Кто не умеет – у меня плохие новости, надо очень немало времени вложить в литкод, чтоб это все на кончиках пальцев было. Я уж стар, не буду за этим гоняться, лучше все то же время вложить в идеи и прототипы. Но все же один советы по литкоду могу дать: если на носу собес, а времени на подготовку не было, здорово все быстро освежить, если пройтись по основным структурам данных и повторить основные задачки уровня easy, с ними связанные. На примере бинарных деревьев: повторить inorder, preorder, postorder traversal, min/max depth, same tree и т.д. Иии… guess what, chatGPT прекрасно помогает с такой шпорой – код пишет, описывает решение. Советую не искать готовые шпоры, а самостоятельно пройтись по основным структурам данных и сделать свой читщит, желательно со своими зарисовками.

С Амазоном я прошел все этапы собеседования на applied scientist, вплотную подобрался уже к выбору команды, но от варианта в Британии отказался, а дальше фриз.

Этапов было много. Первый этап – “телефонный”, полтора часа, 4 части:

- science breadth – вопросы по ML “в ширину”, очень простые, тут ничего не смутило: виды задач в ML (нет, не a) наебать инвесторов и b) попилить бабло), опиши любимый алгоритм, что такое эмбеддинг, BERT, как вытащить эмбеддинги из берта и прочее;
- science depth – тут мини-кейс, пример реальной задачи и как бы ты к ней подступился. Что-то в стиле “Есть задача классификации товаров на сайте Амазона, 10к продуктов, 100 классов, у каждого товара есть фото и описание. Как бы ты подступился?”. Это чисто ML system design, хороши видео Валерия и книга Chip Huyen “Designing Machine Learning Systems”. Про драфт ее же книги про ML интервью я тут уже писал;
- coding – уровень супер-изи типа пройтись по логу, провалидировать формат строк, посчитать частоты слов;
- behavioral – да, они у Амазона в каждом интервью. Я про бихейв писал.

Продолжение ⬇️



group-telegram.com/new_yorko_times/108
Create:
Last Update:

Cобесы в Яндекс и Амазон и куча советов от непрошедшего
#career #interviews #fail #tips

Как известно, у самурая нет оффера, у него есть только собеседования. Я тут писал уже, что фэйлов набралось немало https://www.group-telegram.com/sa/new_yorko_times.com/9, так вот набралось еще. Про чужие фэйлы весело слушать, так что приятных вам букв! А чтоб пост полезней был, опишу подробней некоторые собесы и как я к ним готовился. Да, в итоге я ни в Яндексе, ни в Амазоне, но советы дам, в конце концов, успел родиться в стране советов.

Начну с Яндекса. Я тут хвалил https://www.group-telegram.com/sa/new_yorko_times.com/86 первый собес, где надо было дебажить код трансформера. Второй собес – литкод – я предсказуемо не прошел. Медиум-задачка была наподобие MaxStack – написать свой стек, у которого операции push, pop и max – все за O(1). Я все сделал, но типа как многовато подсказок было да неправильно в другой задаче ответил про то, как конкатенация строк в питоне работает. Кто умеет сходу задачки типа MaxStack решать – хорошие новости, скорее вы готовы к литкоду в Я. Кто не умеет – у меня плохие новости, надо очень немало времени вложить в литкод, чтоб это все на кончиках пальцев было. Я уж стар, не буду за этим гоняться, лучше все то же время вложить в идеи и прототипы. Но все же один советы по литкоду могу дать: если на носу собес, а времени на подготовку не было, здорово все быстро освежить, если пройтись по основным структурам данных и повторить основные задачки уровня easy, с ними связанные. На примере бинарных деревьев: повторить inorder, preorder, postorder traversal, min/max depth, same tree и т.д. Иии… guess what, chatGPT прекрасно помогает с такой шпорой – код пишет, описывает решение. Советую не искать готовые шпоры, а самостоятельно пройтись по основным структурам данных и сделать свой читщит, желательно со своими зарисовками.

С Амазоном я прошел все этапы собеседования на applied scientist, вплотную подобрался уже к выбору команды, но от варианта в Британии отказался, а дальше фриз.

Этапов было много. Первый этап – “телефонный”, полтора часа, 4 части:

- science breadth – вопросы по ML “в ширину”, очень простые, тут ничего не смутило: виды задач в ML (нет, не a) наебать инвесторов и b) попилить бабло), опиши любимый алгоритм, что такое эмбеддинг, BERT, как вытащить эмбеддинги из берта и прочее;
- science depth – тут мини-кейс, пример реальной задачи и как бы ты к ней подступился. Что-то в стиле “Есть задача классификации товаров на сайте Амазона, 10к продуктов, 100 классов, у каждого товара есть фото и описание. Как бы ты подступился?”. Это чисто ML system design, хороши видео Валерия и книга Chip Huyen “Designing Machine Learning Systems”. Про драфт ее же книги про ML интервью я тут уже писал;
- coding – уровень супер-изи типа пройтись по логу, провалидировать формат строк, посчитать частоты слов;
- behavioral – да, они у Амазона в каждом интервью. Я про бихейв писал.

Продолжение ⬇️

BY New Yorko Times


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/new_yorko_times/108

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed.
from sa


Telegram New Yorko Times
FROM American