Telegram Group & Telegram Channel
Необычные значения в данных
Цикл постов о подготовке данных. Пост 3

Продолжаем серию постов, посвященную подготовке данных. Первый пост тут, второй - тут.

Главное, что надо понять про выбросы - откуда они берутся. Какова природа, каков механизм генерации выбросов?

Фреймворк работы с выбросами

- Выявляем необычные точки
- Формулируем гипотезы: как был сгенерирован выброс
- Проверяем гипотезы
- Принимаем решение: интересны ли нам эти случаи
- Выкидываем или трансформируем необычные данные

Примеры

Выявляем необычные точки

Например, анализируя данные о прокате велосипедов, мы можем увидеть заметную часть (несколько процентов) очень коротких поездок. Поездка меньше 60 секунд - очевидно, аномалия.

Формулируем гипотезу: как был сгенерирован выброс

Гипотеза 1: ошибки/отказы. Велосипед был сломан, пользователь увидел это и вернул в прокат.

Гипотеза 2: дождь. Все, кто собирался ехать, отменяют поездки.

Проверяем гипотезы

Гипотеза 1. Скорее всего, таких случаев было много в первые несколько дней сезона, затем мало, и к концу сезона количество отказов постоянно росло. Короткие поездки случаются подряд с одними и теми же велосипедами. Эти предположения можно проверить на имеющихся данных.

Гипотеза 2. Если гипотеза верна, короткие поездки будут сгруппированы по времени и локации, но не привязаны к конкретному велосипеду.

Принимаем решение: интересны ли нам эти случаи

Интересна ли нам аналитика по отказам и нужно ли нам учитывать дождь в аналитике? Общаемся с бизнес-заказчиком и принимаем решение, исходя из целей продукта, над которым работаем.

Выкидываем или трансформируем необычные данные

Если данные не несут дополнительного велью для продукта - можно удалить, если несут, то смотрим пост 2.

Мораль

Для правильной работы с выбросами нужно сформулировать цель анализа и гипотезу о процессе генерации данных, для остального есть инструменты.

Ваш @Reliable ML



group-telegram.com/reliable_ml/145
Create:
Last Update:

Необычные значения в данных
Цикл постов о подготовке данных. Пост 3

Продолжаем серию постов, посвященную подготовке данных. Первый пост тут, второй - тут.

Главное, что надо понять про выбросы - откуда они берутся. Какова природа, каков механизм генерации выбросов?

Фреймворк работы с выбросами

- Выявляем необычные точки
- Формулируем гипотезы: как был сгенерирован выброс
- Проверяем гипотезы
- Принимаем решение: интересны ли нам эти случаи
- Выкидываем или трансформируем необычные данные

Примеры

Выявляем необычные точки

Например, анализируя данные о прокате велосипедов, мы можем увидеть заметную часть (несколько процентов) очень коротких поездок. Поездка меньше 60 секунд - очевидно, аномалия.

Формулируем гипотезу: как был сгенерирован выброс

Гипотеза 1: ошибки/отказы. Велосипед был сломан, пользователь увидел это и вернул в прокат.

Гипотеза 2: дождь. Все, кто собирался ехать, отменяют поездки.

Проверяем гипотезы

Гипотеза 1. Скорее всего, таких случаев было много в первые несколько дней сезона, затем мало, и к концу сезона количество отказов постоянно росло. Короткие поездки случаются подряд с одними и теми же велосипедами. Эти предположения можно проверить на имеющихся данных.

Гипотеза 2. Если гипотеза верна, короткие поездки будут сгруппированы по времени и локации, но не привязаны к конкретному велосипеду.

Принимаем решение: интересны ли нам эти случаи

Интересна ли нам аналитика по отказам и нужно ли нам учитывать дождь в аналитике? Общаемся с бизнес-заказчиком и принимаем решение, исходя из целей продукта, над которым работаем.

Выкидываем или трансформируем необычные данные

Если данные не несут дополнительного велью для продукта - можно удалить, если несут, то смотрим пост 2.

Мораль

Для правильной работы с выбросами нужно сформулировать цель анализа и гипотезу о процессе генерации данных, для остального есть инструменты.

Ваш @Reliable ML

BY Reliable ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/reliable_ml/145

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment.
from sa


Telegram Reliable ML
FROM American