Telegram Group & Telegram Channel
Статический анализ GitHub Actions

Сразу после релиза новой версии линтера, я задался вопросом обновления своего шаблона для создания новых питоновских библиотек: https://github.com/wemake-services/wemake-python-package

И я понял, что я несколько отстал в вопросе стат анализа GitHub Actions и прочей инфраструктуры.
Расскажу о своих находках.

pre-commit ci

Все знают про пакет pre-commit? Несколько лет назад он получил еще и свой собственный CI, который умеет запускаться без дополнительного конфига. И автоматически пушить вам в ветку любые изменения. Что супер удобно для всяких ruff / black / isort и прочего. У нас такое стоит в большом количестве проектов. Вот пример из typeshed. Вот что поменялось автоматически.

Строить CI на базе pre-commit очень удобно, потому что тебе просто нужно скопировать пару строк в конфиг. А плюсов много:
- Автоматически исправляются многие проблемы
- Автоматически запускается CI, 0 настроек
- Локально все тоже работает одной командой: pre-commit run TASK_ID -a

actionlint

Первый раз я увидел actionlint внутри CPython и затащил его в mypy. Actionlint на #go, он предлагает набор проверок для ваших GitHub Actions от безопасности до валидации спеки вашего yml. Довольно полезно, позволяет найти много мест для улучшений.


test.yaml:3:5: unexpected key "branch" for "push" section. expected one of "branches", ..., "workflows" [syntax-check]
|
3 | branch: main
| ^~~~~~~
test.yaml:10:28: label "linux-latest" is unknown. available labels are "macos-latest", ..., "windows". if it is a custom label for self-hosted runner, set list of labels in actionlint.yaml config file [runner-label]
|
10 | os: [macos-latest, linux-latest]
| ^~~~~~~~~~~~~
test.yaml:13:41: "github.event.head_commit.message" is potentially untrusted. avoid using it directly in inline scripts. instead, pass it through an environment variable. see https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions for more details [expression]
|
13 | - run: echo "Checking commit '${{ github.event.head_commit.message }}'"
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Даже умеет автоматом shellcheck запускать на ваши run: скрипты!

zizmor

Исходники. Уже на #rust, он более злой. Делает похожие вещи: находит проблемы безопасности. Находит много проблем.

Вот пример, сколько всего он нашел в mypy.


warning[artipacked]: credential persistence through GitHub Actions artifacts
--> mypy/.github/workflows/mypy_primer.yml:37:9
|
37 | - uses: actions/checkout@v4
| _________-
38 | | with:
39 | | path: mypy_to_test
40 | | fetch-depth: 0
| |________________________- does not set persist-credentials: false
|
= note: audit confidence → Low

error[dangerous-triggers]: use of fundamentally insecure workflow trigger
--> mypy/.github/workflows/mypy_primer_comment.yml:3:1
|
3 | / on:
4 | | workflow_run:
... |
7 | | types:
8 | | - completed
| |_________________^ workflow_run is almost always used insecurely
|
= note: audit confidence → Medium


check-jsonschema

Еще есть вот такой проект, он в основном полезен за счет доп интеграций: можно проверять dependabot.yml, renovate.yml, readthedocs.yml и многое другое.

Ставится просто как:


- repo: https://github.com/python-jsonschema/check-jsonschema
rev: 0.30.0
hooks:
- id: check-dependabot
- id: check-github-workflows


Выводы

Как всегда – статический анализ многому меня научил. Я узнал много нового про безопасность GitHub Actions, про вектора атаки, про лучшие практики. А сколько проблем в ваших actions?

Скоро ждите весь новый тулинг в python шаблоне v2025 😎



group-telegram.com/tech_b0lt_Genona/4923
Create:
Last Update:

Статический анализ GitHub Actions

Сразу после релиза новой версии линтера, я задался вопросом обновления своего шаблона для создания новых питоновских библиотек: https://github.com/wemake-services/wemake-python-package

И я понял, что я несколько отстал в вопросе стат анализа GitHub Actions и прочей инфраструктуры.
Расскажу о своих находках.

pre-commit ci

Все знают про пакет pre-commit? Несколько лет назад он получил еще и свой собственный CI, который умеет запускаться без дополнительного конфига. И автоматически пушить вам в ветку любые изменения. Что супер удобно для всяких ruff / black / isort и прочего. У нас такое стоит в большом количестве проектов. Вот пример из typeshed. Вот что поменялось автоматически.

Строить CI на базе pre-commit очень удобно, потому что тебе просто нужно скопировать пару строк в конфиг. А плюсов много:
- Автоматически исправляются многие проблемы
- Автоматически запускается CI, 0 настроек
- Локально все тоже работает одной командой: pre-commit run TASK_ID -a

actionlint

Первый раз я увидел actionlint внутри CPython и затащил его в mypy. Actionlint на #go, он предлагает набор проверок для ваших GitHub Actions от безопасности до валидации спеки вашего yml. Довольно полезно, позволяет найти много мест для улучшений.


test.yaml:3:5: unexpected key "branch" for "push" section. expected one of "branches", ..., "workflows" [syntax-check]
|
3 | branch: main
| ^~~~~~~
test.yaml:10:28: label "linux-latest" is unknown. available labels are "macos-latest", ..., "windows". if it is a custom label for self-hosted runner, set list of labels in actionlint.yaml config file [runner-label]
|
10 | os: [macos-latest, linux-latest]
| ^~~~~~~~~~~~~
test.yaml:13:41: "github.event.head_commit.message" is potentially untrusted. avoid using it directly in inline scripts. instead, pass it through an environment variable. see https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions for more details [expression]
|
13 | - run: echo "Checking commit '${{ github.event.head_commit.message }}'"
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Даже умеет автоматом shellcheck запускать на ваши run: скрипты!

zizmor

Исходники. Уже на #rust, он более злой. Делает похожие вещи: находит проблемы безопасности. Находит много проблем.

Вот пример, сколько всего он нашел в mypy.


warning[artipacked]: credential persistence through GitHub Actions artifacts
--> mypy/.github/workflows/mypy_primer.yml:37:9
|
37 | - uses: actions/checkout@v4
| _________-
38 | | with:
39 | | path: mypy_to_test
40 | | fetch-depth: 0
| |________________________- does not set persist-credentials: false
|
= note: audit confidence → Low

error[dangerous-triggers]: use of fundamentally insecure workflow trigger
--> mypy/.github/workflows/mypy_primer_comment.yml:3:1
|
3 | / on:
4 | | workflow_run:
... |
7 | | types:
8 | | - completed
| |_________________^ workflow_run is almost always used insecurely
|
= note: audit confidence → Medium


check-jsonschema

Еще есть вот такой проект, он в основном полезен за счет доп интеграций: можно проверять dependabot.yml, renovate.yml, readthedocs.yml и многое другое.

Ставится просто как:


- repo: https://github.com/python-jsonschema/check-jsonschema
rev: 0.30.0
hooks:
- id: check-dependabot
- id: check-github-workflows


Выводы

Как всегда – статический анализ многому меня научил. Я узнал много нового про безопасность GitHub Actions, про вектора атаки, про лучшие практики. А сколько проблем в ваших actions?

Скоро ждите весь новый тулинг в python шаблоне v2025 😎

BY Технологический Болт Генона




Share with your friend now:
group-telegram.com/tech_b0lt_Genona/4923

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from sa


Telegram Технологический Болт Генона
FROM American