group-telegram.com/seeallochnaya/2174
Last Update:
Подарок от китайцев западному миру на Рождество: DeepSeek опубликовали третье поколение своих LLM, так ещё и полноценный технический отчёт (ссылка на PDF). Деталей в нём много, вот очень краткое саммари:
— модель гигантская, больше 650 миллиардов параметров, однако как и в прошлый раз применяется подход MoE, микстура экспертов. Поэтому каждое слово при генерации проходит примерно через 37 миллиардов параметров.
— они предлагают оптимальный способ применения моделей, для чего нужно... больше 340 GPU
— модель тренировали относительно мало, так как обучение очень эффективно. На финальный запуск потратили менее $6M на 2048 GPU. При этом модель видела почти 15 триллионов токенов (как LLAMA3). Большая часть вычислений происходила в FP8 (E4M3; так как GPU быстрее считают)
— модель училась предсказывать сразу несколько следующих слов. Помимо улучшения качества это позволяет из коробки получить спекулятивное декодирование, то есть а) удешевить б) ускорить использование. У DeepSeek цены вообще копеечные по сравнению с другими провайдерами.
— данные для дообучения получались путём... генерации цепочек рассуждений моделью R1 (это их аналог o1). Это для математики, программирования и смежных областей, написание эссе и более традиционные нетехничекие задачи делали как обычно
— в конце статьи авторы даже дают рекомендации на будущее производителям чипов, что и как бы им хотелось видеть
Ссылку на веса давать не буду (а зачем, у вас что, есть 2x8H100?), но поиграться можно бесплатно на сайте тут.
Ну а метрики — вот: