group-telegram.com/seeallochnaya/2176
Last Update:
Bubeck:
— я согласен с этими вещами (про тренировочные данные, креативность и ошибки в рассуждениях) и с исследовательской работой McCoy, но я прихожу к другим выводам и спорю с тем, как это воспринимаете вы. Я вот могу судить по себе, что большая часть моих исследований — это комбинирование того, что уже есть, плюс совсем немного случайных блужданий вокруг идеи. И то же я вижу в подавляющем большинстве других работ, взяли то и это, скрестили, получили такой результат. Комбинирование само по себе — это безумно сильный навык.
— Что же касается ненулевых галлюцинаций в длинных цепочках рассуждений, ну, кажется эта критика применима и к людям. Если посмотреть на черновики научных статей на 50+ страниц — они часто содержат неточности и ошибки, и поэтому у нас есть процесс ревью, где люди получают обратную связь от ревьюиров, им указывают на белые пятна итд. Это важная часть итеративного процесса исследований. И она хорошо переносится на LLM, где нескольким разным агентам присваивают роли: одна модель генерирует решения, другая ищет ошибки и указываете на них, потом первая исправляет и так по кругу.
— И последнее — да, модели могут хуже решать задачи, навыки для которых редко проявляются в тренировочных данных. Но это не значит, что этих навыков в них нет — они представлены, просто на модель нет давления их проявлять (и она не выучилась как их использовать), но можно использовать дообучение для того чтобы извлечь и проявить навыки [прим.: как делали с GPT-3.5 и с o1]
McCoy:
— а мы кстати провели те же исследования на сортировку и подсчёт с o1-preview, и хоть модель стала существенно лучше, всё равно не справляется так хорошо с менее частыми примерами задач. Пока не выглядит так, что дообучение позволяет побороть проблему. А чтобы комбинировать навыки и знания нужно знать что именно комбинировать, и моделям часто нужно явно говорить, что брать и что делать — они сами не могут.
— Если рассматривать самые успешные и прорывные доказательства в науке, то они отличаются креативностью, используют и комбинируют вещи в новых форматах, не так как, как это привыкли делать.
Bubeck:
— Я поделюсь своим опытом. Недавно во время работы с о1 [прим.: он говорит o1 плюс эпсилон, ахахах это наверное o3 была? на момент дебатов её не анонсировали] я взял свою статью которая уже почти дописана, но нигде не опубликована, лежит ждет полировки. Материал точно новый, и отвечает на вопрос «how long can be the gradient flow of a convex function?». Я задал этот вопрос модели, и она подумала и предложила связь этой темы и «self-contracted curves» и объяснила почему это хорошая идея. Когда я работал над статьей мне потребовалось 3 дня, чтобы самому прийти к этой связи. Я мог бы написать статью на 3 дня быстрее даже вот с этой базовой моделью, доступной сегодня! И это не гипотетические ситуации, это уже вот здесь с нами в наше время.
— Вдобавок я знаю людей в аудитории, которые рассказывали похожие истории, как о1 им помогала с нахождением связанных с их вопросом лемм.
McCoy:
— ну это всё как бы да и круто, но ведь те математические проблемы, о которых мы говорим в рамках дискуссии — сейчас-то люди с ними не справляются, то есть не достаточно достигнуть уровня «как у людей», нужно прыгнуть выше. Не считаю, что про это мой оппонент что-то сказал.
Закрывающие высказывания. McCoy:
— я оптимистичен по поводу AI-помощников, которые помогут нам, даже в этих нерешённых проблемам, но скептичен, что дальнейшее масштабирование приведёт к автоматическим доказательствах, не вовлекая людей.
— Что нужно улучшить в моделях? Длинные рассуждения и долгосрочную память (и её использование), надежность работы и ситуацию с галлюцинациями тоже нужно улучшать.
— Никто не знает что значит быть креативным, но что скорее всего важно - это аналогии и абстракции, которые помогают смотреть на те же идеи под новым углом, и находить новые связи.
BY Сиолошная
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Share with your friend now:
group-telegram.com/seeallochnaya/2176