Notice: file_put_contents(): Write of 5523 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 13715 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Старший Авгур | Telegram Webview: senior_augur/338 -
Telegram Group & Telegram Channel
Trust or Escalate: LLM Judges with Provable Guarantees for Human Agreement
Статья: https://arxiv.org/abs/2407.18370
Рецензии: https://openreview.net/forum?id=UHPnqSTBPO

Попарные оценки языковыми моделями с теоретическими гарантиями согласованности с людьми 😐

Что за теоретические гарантии? Предположим, что мы задаём уровень риска α и хотим, чтобы для примера x вероятность согласованности языковой модели с людьми на этом примере была больше 1 - α, при условии, что этот мы вообще оцениваем этот пример. Последняя фраза тут очень важна — очевидно, что есть примеры, на которых даже у людей очень низкая согласованность, и такие примеры мы хотим каким-то образом определять и не учитывать их в оценке. Теперь для каждого метода оценки у нас есть 2 чиселки: непосредственно согласованность с людьми, а ещё и покрытие, то есть доля примеров, которые мы не откинули в процессе оценки.

🔹Few-shot ансамблирование
Для начала нам нужно понять, а как вообще отсеивать примеры, которые мы не хотим оценивать? Для этого мы можем попросить модель каким-то образом вывести уверенность в своей оценке. Исходя из этой уверенности и маленького калибровочного набора данных, можно вывести минимальную уверенность для заданного α, ниже которой мы должны откидывать примеры.

Есть разные методы оценки уверенности модели, например можно взять прямую вероятность генерации ответа, или можно попросить модель явно выдавать уверенность текстом. Авторы считают точность, ROC AUC и другие метрики классификации для этих вариантов и показывают, что они жёстко переоценивают уверенность модели. Поэтому предлагается ансамблировать несколько few-shot ответов модели с разными наборами примеров в контексте. Авторы показывают, что такая уверенность лучше откалибрована, а значит позволяет отсеивать меньше примеров.

🔹Каскады
Второй шаг ещё интереснее: дело в том, что слабые модели тоже неплохо откалиброваны. А значит можно сначала прогнать примеры через дешёвые модели с высокой границей уверенности. Если они прошли фильтр — шикарно, используем дешёвую модель для оценки. Если нет — переходим к более дорогой модели. Полностью откидываем пример только тогда, когда все модели не уверены.

🔹Эмпирические оценки
А дальше оказывается, что это всё очень хорошо бьётся с эмпирической согласованностью. То есть теоретическая оценка согласованности действительно является оценкой снизу на практике. Кроме того, авторы показывают, что выкинутые примеры дейсвительно были бы выкинуты по несогласованности людей.

Итого мы получаем:
1) чёткую схему оценки
2) с теоретическими гарантиями согласованности
3) с эмпирической согласованностью выше, чем у GPT-4 💪
3) с инференсом в 2-5 раз дешевле, чем у GPT-4 😺

P.S. Гитхаб пустой, но весь код можно найти в доп. материалах на OpenReview 😁
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/senior_augur/338
Create:
Last Update:

Trust or Escalate: LLM Judges with Provable Guarantees for Human Agreement
Статья: https://arxiv.org/abs/2407.18370
Рецензии: https://openreview.net/forum?id=UHPnqSTBPO

Попарные оценки языковыми моделями с теоретическими гарантиями согласованности с людьми 😐

Что за теоретические гарантии? Предположим, что мы задаём уровень риска α и хотим, чтобы для примера x вероятность согласованности языковой модели с людьми на этом примере была больше 1 - α, при условии, что этот мы вообще оцениваем этот пример. Последняя фраза тут очень важна — очевидно, что есть примеры, на которых даже у людей очень низкая согласованность, и такие примеры мы хотим каким-то образом определять и не учитывать их в оценке. Теперь для каждого метода оценки у нас есть 2 чиселки: непосредственно согласованность с людьми, а ещё и покрытие, то есть доля примеров, которые мы не откинули в процессе оценки.

🔹Few-shot ансамблирование
Для начала нам нужно понять, а как вообще отсеивать примеры, которые мы не хотим оценивать? Для этого мы можем попросить модель каким-то образом вывести уверенность в своей оценке. Исходя из этой уверенности и маленького калибровочного набора данных, можно вывести минимальную уверенность для заданного α, ниже которой мы должны откидывать примеры.

Есть разные методы оценки уверенности модели, например можно взять прямую вероятность генерации ответа, или можно попросить модель явно выдавать уверенность текстом. Авторы считают точность, ROC AUC и другие метрики классификации для этих вариантов и показывают, что они жёстко переоценивают уверенность модели. Поэтому предлагается ансамблировать несколько few-shot ответов модели с разными наборами примеров в контексте. Авторы показывают, что такая уверенность лучше откалибрована, а значит позволяет отсеивать меньше примеров.

🔹Каскады
Второй шаг ещё интереснее: дело в том, что слабые модели тоже неплохо откалиброваны. А значит можно сначала прогнать примеры через дешёвые модели с высокой границей уверенности. Если они прошли фильтр — шикарно, используем дешёвую модель для оценки. Если нет — переходим к более дорогой модели. Полностью откидываем пример только тогда, когда все модели не уверены.

🔹Эмпирические оценки
А дальше оказывается, что это всё очень хорошо бьётся с эмпирической согласованностью. То есть теоретическая оценка согласованности действительно является оценкой снизу на практике. Кроме того, авторы показывают, что выкинутые примеры дейсвительно были бы выкинуты по несогласованности людей.

Итого мы получаем:
1) чёткую схему оценки
2) с теоретическими гарантиями согласованности
3) с эмпирической согласованностью выше, чем у GPT-4 💪
3) с инференсом в 2-5 раз дешевле, чем у GPT-4 😺

P.S. Гитхаб пустой, но весь код можно найти в доп. материалах на OpenReview 😁

BY Старший Авгур




Share with your friend now:
group-telegram.com/senior_augur/338

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said.
from us


Telegram Старший Авгур
FROM American