Forwarded from e/acc
o3 на 175 месте в Codeforces, то есть примерно 175й сильнейший программист во всем мире.
Это лучше 99,9% участников рейтинга (а все из них — это профессиональные программисты).
Живые участники рейтинга, у которых с 1 по 100 место — это люди, которые выигрывали золотые медали по информатике и продолжали профессионально участвовать в соревнованиях после школы/универа.
Это лучше 99,9% участников рейтинга (а все из них — это профессиональные программисты).
Живые участники рейтинга, у которых с 1 по 100 место — это люди, которые выигрывали золотые медали по информатике и продолжали профессионально участвовать в соревнованиях после школы/универа.
OpenAI душат (потому что o2 нет).
Это всё ещё неимоверно дорого, как и весь test-time compute, но иногда это стоит того. Особенно в тех случаях, когда человеки не могут что-то решить в принципе.
Это всё ещё неимоверно дорого, как и весь test-time compute, но иногда это стоит того. Особенно в тех случаях, когда человеки не могут что-то решить в принципе.
На HF довольно давно появился пост, который я как-то пропустил, но который хорошо и кратко описывает основные оптимизации при обучении языковых моделей. Пост: ссылка
Есть ещё старый пост на ту же тему от Eleuther: ссылка
А пост ниже — это короткая выжимка от меня, именно по экономии памяти на одной карточке.
🔹Числа с плавающей точкой (IEEE 754) — основной тип для вычислений в языковых моделях, у них есть знак, экспонента и мантисса. Экспонента контролирует диапазон значений, мантисса — точность в рамках этого диапазона. Также напомню, что есть приколы с представлением чисел около нуля (aka денормализованные числа). Есть куча реализаций разной битности:
— float: 32 бита, E8M23
— tf32: 19 бит, E8M10 (специфичный для Nvidia формат, отсюда все странности)
— fp16: 16 бит, E5M10
— bf16: 16 бит, E8M7 (экспонента и диапазон как у float)
— fp8: 8 бит, E4M3 или E5M2
🔹На что тратится память:
W: Сами веса модели
A: Активации (промежуточные состояния, результат вычисления функции от входа и весов)
G: Градиенты (обновления весов модели при обучении)
O: Состояние оптимизатора (моменты и дисперсия)
При инференсе есть только W и часть A, при обучении есть все 4 категории. Далее у каждого метода стоят буквы, которые обозначают, что именно экономится.
🔹Методы экономии памяти при инференсе:
— Квантование модели (WA): ужимаем тип данных для весов и активаций. В большинстве статьей так и написано: W4A16, что означает, что веса в 4 битах, активации в 16 битах.
— Flash Attention (A): оптимизируем вычисление внимания поблочными вычислениями в кэше GPU, попутно уменьшая сложность по памяти с квадратичной по длине последовательности до линейной.
🔹Дополнительные методы экономии памяти при обучении на одной карточке:
— Смешанная точность (A): имеем рабочую копию в 16 битах (bf16 или fp16), а также мастер-копию в 32 битах. Все операции делаем с рабочей копией и потом обновления весов вливаем в мастер-копию. Вы спросите: а где профит? А профит в том, что активации в 16 битах, а активации — это дофига памяти.
— Квантование оптимизатора (O): ужимаем тип данных для состояний оптимизатора. Чаще всего в 8 бит, перед собственно применением градиентов расквантовываем.
— Аккумуляция градиентов (AG): если мы хотим батч из больше чем одного примера, то A и G тоже раздуются. Но нам совсем не обязательно считать градиенты параллельно, поэтому мы можем считать их последовательно, суммировать, и только потом применять. Если это правильно😁 отмасштабировать, то это теоретически эквивалентно обучению на всём батче.
— Чекпоинты активаций (A): при обучении нам по-хорошему нужны активации на всех слоях, чтобы потом считать по ним градиенты. Но нам сначала нужно дойти до лосса, поэтому мы выкидываем часть промежуточных активаций и пересчитываем их заново на основе оставшихся чекпоинтов тогда, когда они нам реально понадобятся для подсчёта градиентов.
— Адаптеры (GO): основную модель вообще не трогаем, учим только новый маленький набор весов. Градиенты считаем только по нему, и на этом сильно экономим.
На практике используется буквально всё, везде и сразу🤯
Типичный конфиг:
Есть ещё старый пост на ту же тему от Eleuther: ссылка
А пост ниже — это короткая выжимка от меня, именно по экономии памяти на одной карточке.
🔹Числа с плавающей точкой (IEEE 754) — основной тип для вычислений в языковых моделях, у них есть знак, экспонента и мантисса. Экспонента контролирует диапазон значений, мантисса — точность в рамках этого диапазона. Также напомню, что есть приколы с представлением чисел около нуля (aka денормализованные числа). Есть куча реализаций разной битности:
— float: 32 бита, E8M23
— tf32: 19 бит, E8M10 (специфичный для Nvidia формат, отсюда все странности)
— fp16: 16 бит, E5M10
— bf16: 16 бит, E8M7 (экспонента и диапазон как у float)
— fp8: 8 бит, E4M3 или E5M2
🔹На что тратится память:
W: Сами веса модели
A: Активации (промежуточные состояния, результат вычисления функции от входа и весов)
G: Градиенты (обновления весов модели при обучении)
O: Состояние оптимизатора (моменты и дисперсия)
При инференсе есть только W и часть A, при обучении есть все 4 категории. Далее у каждого метода стоят буквы, которые обозначают, что именно экономится.
🔹Методы экономии памяти при инференсе:
— Квантование модели (WA): ужимаем тип данных для весов и активаций. В большинстве статьей так и написано: W4A16, что означает, что веса в 4 битах, активации в 16 битах.
— Flash Attention (A): оптимизируем вычисление внимания поблочными вычислениями в кэше GPU, попутно уменьшая сложность по памяти с квадратичной по длине последовательности до линейной.
🔹Дополнительные методы экономии памяти при обучении на одной карточке:
— Смешанная точность (A): имеем рабочую копию в 16 битах (bf16 или fp16), а также мастер-копию в 32 битах. Все операции делаем с рабочей копией и потом обновления весов вливаем в мастер-копию. Вы спросите: а где профит? А профит в том, что активации в 16 битах, а активации — это дофига памяти.
— Квантование оптимизатора (O): ужимаем тип данных для состояний оптимизатора. Чаще всего в 8 бит, перед собственно применением градиентов расквантовываем.
— Аккумуляция градиентов (AG): если мы хотим батч из больше чем одного примера, то A и G тоже раздуются. Но нам совсем не обязательно считать градиенты параллельно, поэтому мы можем считать их последовательно, суммировать, и только потом применять. Если это правильно
— Чекпоинты активаций (A): при обучении нам по-хорошему нужны активации на всех слоях, чтобы потом считать по ним градиенты. Но нам сначала нужно дойти до лосса, поэтому мы выкидываем часть промежуточных активаций и пересчитываем их заново на основе оставшихся чекпоинтов тогда, когда они нам реально понадобятся для подсчёта градиентов.
— Адаптеры (GO): основную модель вообще не трогаем, учим только новый маленький набор весов. Градиенты считаем только по нему, и на этом сильно экономим.
На практике используется буквально всё, везде и сразу
Типичный конфиг:
"model": {
"attn_implementation": "flash_attention_2", // вы поняли
"load_in_4bit": true, // квантование модели
...
},
"trainer": {
"gradient_accumulation_steps": 32, // аккумуляция градиентов
"bf16": true, // смешанная точность
"optim": "adamw_8bit", // квантование оптимизатора
"gradient_checkpointing": true, // чекпоинты активаций
...
},
"lora": {...} // адаптеры
Please open Telegram to view this post
VIEW IN TELEGRAM
Cut Your Losses in Large-Vocabulary Language Models
Статья: https://arxiv.org/abs/2411.09009
Рецензии: https://openreview.net/forum?id=E4Fk3YuG56
Код: https://github.com/apple/ml-cross-entropy
Статья про оптимизацию памяти при подсчёте функции потерь и её ближайших градиентов при обучении языковых моделей. Основной механизм — модифицированная реализация перекрёстной энтропии, Cut Cross-Entropy (CCE). Авторы берут ровно ту же оптимизацию, которая используется в Flash Attention (поблочное вычисление в кэше GPU), но применяют её к последнему слою и последнему софтмаксу.
Последний шаг при предсказании следующего токена — линейный слой и софтмакс. На каждом шаге генерации у нас есть вектор E с последнего слоя трансформера, мы умножаем его на матрицу C, получаем логиты в ℝ^|V|, для каждого логита считаем экспоненту и делим на сумму всех логитов из всего словаря. Так для каждого токена получаем вероятность, число в отрезке [0, 1]. Функция потерь при обучении — логарифм вероятности правильного токена (с минусом). Нас интересует только правильный токен, и только его логит нам нужен в числителе софтмакса. Логарифм в лоссе гасит экспоненту в числителе. Вычисление раскладывается на две части: вычисление логита правильного токена и вычисление слагаемого нормализации по E и всем столбцам C (логарифм суммы экспонент).
При обучении мы можем считать всё параллельно для всех токенов, поэтому там уже не вектор E, а матрица E.
Для вычисления логитов правильных токенов авторы выгружают блоки релевантных столбцов C и блоки E в кэш, считают там скалярное произведение, и выгружают назад в основную память только финальный результат. Вычисление логарифма суммы экспонент гораздо хитрее, как и вычисление его градиентов, но концепция та же.
Кроме собственно оптимизаций с кэшом, используется тот факт, что большинство значений на выходе софтмакса "плохие", то есть очень близкие к нулю. Из-за ограниченной точности чисел с плавающей точкой, "плохие" значения ни на что не влияют при использовании в слагаемом нормализации. И для них авторы предлагают просто не считать градиенты. Вторая оптимизация такого рода — сортировка словаря по средним логитам, чтобы токены с "плохими" логитами попадали в один блок, и можно было такие блоки полностью пропускать.
По классификации в прошлом посте — это AG метод, полезен только при обучении. Есть и древние альтернативы, да хотя бы иерархический софтмакс или адаптивный софтмакс.
Экспериментально для Мистраля Немо удалось уменьшить память на лосс+градиенты с 8 Гб до 1.3 Гб, что лучше, чем в Liger Kernel. Аналогичная (и иногда даже более существенная) экономия памяти есть и для других моделей.
Потрогать можно через их библиотеку и патчинг модели. То есть вы делаете вот такое:
После этого лосс и градиенты будут считаться как в статье. Но логиты не будут возвращаться, потому что они не материализуются в принципе.
Статья: https://arxiv.org/abs/2411.09009
Рецензии: https://openreview.net/forum?id=E4Fk3YuG56
Код: https://github.com/apple/ml-cross-entropy
Статья про оптимизацию памяти при подсчёте функции потерь и её ближайших градиентов при обучении языковых моделей. Основной механизм — модифицированная реализация перекрёстной энтропии, Cut Cross-Entropy (CCE). Авторы берут ровно ту же оптимизацию, которая используется в Flash Attention (поблочное вычисление в кэше GPU), но применяют её к последнему слою и последнему софтмаксу.
Последний шаг при предсказании следующего токена — линейный слой и софтмакс. На каждом шаге генерации у нас есть вектор E с последнего слоя трансформера, мы умножаем его на матрицу C, получаем логиты в ℝ^|V|, для каждого логита считаем экспоненту и делим на сумму всех логитов из всего словаря. Так для каждого токена получаем вероятность, число в отрезке [0, 1]. Функция потерь при обучении — логарифм вероятности правильного токена (с минусом). Нас интересует только правильный токен, и только его логит нам нужен в числителе софтмакса. Логарифм в лоссе гасит экспоненту в числителе. Вычисление раскладывается на две части: вычисление логита правильного токена и вычисление слагаемого нормализации по E и всем столбцам C (логарифм суммы экспонент).
При обучении мы можем считать всё параллельно для всех токенов, поэтому там уже не вектор E, а матрица E.
Для вычисления логитов правильных токенов авторы выгружают блоки релевантных столбцов C и блоки E в кэш, считают там скалярное произведение, и выгружают назад в основную память только финальный результат. Вычисление логарифма суммы экспонент гораздо хитрее, как и вычисление его градиентов, но концепция та же.
Кроме собственно оптимизаций с кэшом, используется тот факт, что большинство значений на выходе софтмакса "плохие", то есть очень близкие к нулю. Из-за ограниченной точности чисел с плавающей точкой, "плохие" значения ни на что не влияют при использовании в слагаемом нормализации. И для них авторы предлагают просто не считать градиенты. Вторая оптимизация такого рода — сортировка словаря по средним логитам, чтобы токены с "плохими" логитами попадали в один блок, и можно было такие блоки полностью пропускать.
По классификации в прошлом посте — это AG метод, полезен только при обучении. Есть и древние альтернативы, да хотя бы иерархический софтмакс или адаптивный софтмакс.
Экспериментально для Мистраля Немо удалось уменьшить память на лосс+градиенты с 8 Гб до 1.3 Гб, что лучше, чем в Liger Kernel. Аналогичная (и иногда даже более существенная) экономия памяти есть и для других моделей.
Потрогать можно через их библиотеку и патчинг модели. То есть вы делаете вот такое:
from cut_cross_entropy.transformers import cce_patch
model = ...
model = cce_patch(model)
После этого лосс и градиенты будут считаться как в статье. Но логиты не будут возвращаться, потому что они не материализуются в принципе.
А я напомнию, что индекс всех полезных постов всегда в закрепе: https://www.group-telegram.com/senior_augur.com/7
Telegram
Старший Авгур
ИНДЕКС
Чат канала: @augur_chat
Сайга-бот: @saiga_igusev_bot
Про локальные языковые модели для относительно неподготовленной аудитории:
Видео: https://youtu.be/KXBRGkZTX1U?si=CyVKSUavsSnZfffR&t=241
Презентация: http://tinyurl.com/gusevlocal
Подкаст: ht…
Чат канала: @augur_chat
Сайга-бот: @saiga_igusev_bot
Про локальные языковые модели для относительно неподготовленной аудитории:
Видео: https://youtu.be/KXBRGkZTX1U?si=CyVKSUavsSnZfffR&t=241
Презентация: http://tinyurl.com/gusevlocal
Подкаст: ht…
The Pitfalls of Next-Token Prediction
Статья: https://arxiv.org/abs/2403.06963
Видео: https://www.youtube.com/watch?v=9V0bfZqT1Yo
Олды несомненно помнят, что в ранних seq2seq моделях, основанных на рекуррентных нейронных сетях, существовало два режима обучения: teacher-forcing, где на каждом шаге генерации в качестве входов использовались реальные токены, и другой режим с использованием токенов, предсказанных текущей версией модели. С появлением трансформеров и их параллельного обучения все стали использовать teacher-forcing. Авторы статьи возвращаются к этому вопросу.
🔹Задача
Авторы придумали простую синтетическую задачу: поиск пути между двумя вершинами в деревьях очень специфичной структуры, а именно в таких, где есть одна центральная вершина и несколько цепочек, исходящих из этой центральной вершины. Пример такого дерева (степень центральной вершины = 2, длина цепочек = 5):
Условия задачи:
— Степень центральной вершины и длина цепочек фиксированы для всех деревьев в обучающей и тестовой выборке.
— Путь всегда начинается в центральной вершине.
— Путь всегда заканчивается в одном из листьев.
Вход для задачи выглядит как случайно перемешанный набор рёбер дерева, плюс начало и конец пути (после "/"):
Выход выглядит как сам путь:
Эту задачу мы решаем какой-нибудь моделью, которая умеет работать с последовательностями, например трансформером или рекуррентной сетью в авторегрессионном режиме (генерация токенов слева направо, как в языковых моделях).
🔹Эмпирическая часть
— Авторегрессионные модели не справляются с решением этой задачи даже для деревьев с фиксированной структурой. Потому что сложно понять, в какую сторону идти от центральной вершины.💀
— При развороте пути задача успешно решается авторегрессионными моделями. Это логично, потому что так гораздо проще: вы просто поднимаетесь по родителям, пока не найдёте центральную вершину.📈
— Если во время обучения маскировать уже пройденную часть пути, модели также успешно решают задачу без разворота. Это странно, потому что мы делаем задачу сложнее для модели, заставляя её генерировать весь путь сразу. Но каким-то образом на такой версии задачи модель учится, а на оригинальной — нет.😱
Я потратил пару вечеров и воспроизвёл это в Колабе: ссылка. Воспроизводил для 2-5 деревьев, то есть ровно таких, как в примере выше. Код писал с нуля, но опираясь на их Гитхаб. Всё получилось, как написано в статье: усложнение задачи приводит к возможности её выучивания. Технически это выглядит просто как маскирование части input_ids.
🔹Про предсказание следующего токена
Щепотка "соломенного чучела": распространенная критика языковых моделей состоит в том, что они являются лишь "стохастическими попугаями", способными только предсказывать следующий токен. Считается, что из-за этого они не могут эффективно планировать или исправлять ошибки.
Однако авторы статьи предполагают, что основная проблема не в механизме предсказания следующего токена как таковом. Проблема — в teacher forcing'е, то есть в том, что во время обучения у модели нет необходимости планировать и пытаться сформулировать решение в активациях. И ведь большинство современных моделей обучалось именно с использованием этого метода.
🔹Ограничения
— Эмпирическая часть работает при фиксированном наборе гиперпараметров, и сломав их, можно сломать 2 и 3 наблюдение. Обучение и обучаемость таких моделей — это прежде всего оптимизационная задача, и там есть значительная доля случайности. Однако ни у меня, ни у авторов не получилось сделать модель, которая была бы контрпримером для первого наблюдения.
— У авторов нет никакого теоретического обоснования наблюдений. Как нет и алгоритма, по которому сеть считает путь. Мне кажется, что тут есть простор для творчества и механистической интерпретации.
Статья: https://arxiv.org/abs/2403.06963
Видео: https://www.youtube.com/watch?v=9V0bfZqT1Yo
Олды несомненно помнят, что в ранних seq2seq моделях, основанных на рекуррентных нейронных сетях, существовало два режима обучения: teacher-forcing, где на каждом шаге генерации в качестве входов использовались реальные токены, и другой режим с использованием токенов, предсказанных текущей версией модели. С появлением трансформеров и их параллельного обучения все стали использовать teacher-forcing. Авторы статьи возвращаются к этому вопросу.
🔹Задача
Авторы придумали простую синтетическую задачу: поиск пути между двумя вершинами в деревьях очень специфичной структуры, а именно в таких, где есть одна центральная вершина и несколько цепочек, исходящих из этой центральной вершины. Пример такого дерева (степень центральной вершины = 2, длина цепочек = 5):
8 ← 1 ← 5 ← 4 ← 3 → 0 → 2 → 6 → 7
Условия задачи:
— Степень центральной вершины и длина цепочек фиксированы для всех деревьев в обучающей и тестовой выборке.
— Путь всегда начинается в центральной вершине.
— Путь всегда заканчивается в одном из листьев.
Вход для задачи выглядит как случайно перемешанный набор рёбер дерева, плюс начало и конец пути (после "/"):
3 → 4 | 5 → 1 | 4 → 5 | 0 → 2 | 3 → 0 | 1 → 8 | 6 → 7 | 2 → 6 / 3 7
Выход выглядит как сам путь:
3 → 0 → 2 → 6 → 7
Эту задачу мы решаем какой-нибудь моделью, которая умеет работать с последовательностями, например трансформером или рекуррентной сетью в авторегрессионном режиме (генерация токенов слева направо, как в языковых моделях).
🔹Эмпирическая часть
— Авторегрессионные модели не справляются с решением этой задачи даже для деревьев с фиксированной структурой. Потому что сложно понять, в какую сторону идти от центральной вершины.
— При развороте пути задача успешно решается авторегрессионными моделями. Это логично, потому что так гораздо проще: вы просто поднимаетесь по родителям, пока не найдёте центральную вершину.
— Если во время обучения маскировать уже пройденную часть пути, модели также успешно решают задачу без разворота. Это странно, потому что мы делаем задачу сложнее для модели, заставляя её генерировать весь путь сразу. Но каким-то образом на такой версии задачи модель учится, а на оригинальной — нет.
Я потратил пару вечеров и воспроизвёл это в Колабе: ссылка. Воспроизводил для 2-5 деревьев, то есть ровно таких, как в примере выше. Код писал с нуля, но опираясь на их Гитхаб. Всё получилось, как написано в статье: усложнение задачи приводит к возможности её выучивания. Технически это выглядит просто как маскирование части input_ids.
🔹Про предсказание следующего токена
Щепотка "соломенного чучела": распространенная критика языковых моделей состоит в том, что они являются лишь "стохастическими попугаями", способными только предсказывать следующий токен. Считается, что из-за этого они не могут эффективно планировать или исправлять ошибки.
Однако авторы статьи предполагают, что основная проблема не в механизме предсказания следующего токена как таковом. Проблема — в teacher forcing'е, то есть в том, что во время обучения у модели нет необходимости планировать и пытаться сформулировать решение в активациях. И ведь большинство современных моделей обучалось именно с использованием этого метода.
🔹Ограничения
— Эмпирическая часть работает при фиксированном наборе гиперпараметров, и сломав их, можно сломать 2 и 3 наблюдение. Обучение и обучаемость таких моделей — это прежде всего оптимизационная задача, и там есть значительная доля случайности. Однако ни у меня, ни у авторов не получилось сделать модель, которая была бы контрпримером для первого наблюдения.
— У авторов нет никакого теоретического обоснования наблюдений. Как нет и алгоритма, по которому сеть считает путь. Мне кажется, что тут есть простор для творчества и механистической интерпретации.
Please open Telegram to view this post
VIEW IN TELEGRAM
Поздравляю всех подписчиков с наступающим Новым годом!
Про свои личные итоги года я писать не очень хочу: съездил в пару-тройку стран, написал статью, как-то поработал. Поэтому напишу про прочитанное и просмотренное, кому-то точно будет интересно.
Статьи:
— Zoology: крутая синтетическая задача (MQAR) и обоснование того, чего не хватает современенным рекуррентным сетям.
— Чувствительные функции: обоснование невыучиваемости трансформерами мегапростой задачи, parity.
— Медуза: критически важная штука на практике, ускорение моделей чуть ли не на порядок.
Сериалы:
— Pantheon: мультик про бессмертие через загрузку сознания, с крутыми сюжетными поворотами и неожиданным масштабом.
— Агент времени: китайское аниме про парней, которые умеют перемещаться в человека и момент на фотографии, чтобы добывать информацию.
— Severance: у главного героя и его коллег 2 физически отдельных личности на работе и вне работы, и в какой-то момент это становится проблемой.
Фильмы:
— Когерентность: очень дешёвый и очень прикольный фильм про параллельные вселенные. Да и в целом рекомендую весь жанр НФ триллеров, которые сначала маскируются под обычные ужастики: Прочь, Нет, Мы.
Игры:
— Balatro: карточный рогалик в покерной стилистике с кучей прикольных механик, в который я вбухал сотни часов.
— Factorio: Space Age: в представлении не нуждается. Скоро будет ровно 10 лет с того момента, как я купил оригинальную игру. DLC добавляет космические платформы и другие планеты с другим распределением ресурсов. А ещё дроны теперь открываются сильно позднее, поэтому приходится всё делать нормально.
— Marvel Rivals: новый командный геройский шутер. Очень зашёл мне, как постоянному игроку первого Overwatch.
Книги:
— Вселенная Боба: крепкая развелкательная фантастика (а я другого нынче почти и не читаю). Главный герой — человек, переродившийся в зонд фон Неймана, сначала спасающий Землю, а потом исследующий космос.
— Диктатор: скорее социальная фантастика про параллельную версию Земли и про человека, который хотел мира во всём мире.
— Вавилон: сокрытая история: фантастика про лингвистику в декорациях Оксфорда начала 19 века. Классная концепция, но слитая концовка.
Про свои личные итоги года я писать не очень хочу: съездил в пару-тройку стран, написал статью, как-то поработал. Поэтому напишу про прочитанное и просмотренное, кому-то точно будет интересно.
Статьи:
— Zoology: крутая синтетическая задача (MQAR) и обоснование того, чего не хватает современенным рекуррентным сетям.
— Чувствительные функции: обоснование невыучиваемости трансформерами мегапростой задачи, parity.
— Медуза: критически важная штука на практике, ускорение моделей чуть ли не на порядок.
Сериалы:
— Pantheon: мультик про бессмертие через загрузку сознания, с крутыми сюжетными поворотами и неожиданным масштабом.
— Агент времени: китайское аниме про парней, которые умеют перемещаться в человека и момент на фотографии, чтобы добывать информацию.
— Severance: у главного героя и его коллег 2 физически отдельных личности на работе и вне работы, и в какой-то момент это становится проблемой.
Фильмы:
— Когерентность: очень дешёвый и очень прикольный фильм про параллельные вселенные. Да и в целом рекомендую весь жанр НФ триллеров, которые сначала маскируются под обычные ужастики: Прочь, Нет, Мы.
Игры:
— Balatro: карточный рогалик в покерной стилистике с кучей прикольных механик, в который я вбухал сотни часов.
— Factorio: Space Age: в представлении не нуждается. Скоро будет ровно 10 лет с того момента, как я купил оригинальную игру. DLC добавляет космические платформы и другие планеты с другим распределением ресурсов. А ещё дроны теперь открываются сильно позднее, поэтому приходится всё делать нормально.
— Marvel Rivals: новый командный геройский шутер. Очень зашёл мне, как постоянному игроку первого Overwatch.
Книги:
— Вселенная Боба: крепкая развелкательная фантастика (а я другого нынче почти и не читаю). Главный герой — человек, переродившийся в зонд фон Неймана, сначала спасающий Землю, а потом исследующий космос.
— Диктатор: скорее социальная фантастика про параллельную версию Земли и про человека, который хотел мира во всём мире.
— Вавилон: сокрытая история: фантастика про лингвистику в декорациях Оксфорда начала 19 века. Классная концепция, но слитая концовка.
У Anthropic пару недель назад вышел пост про агентов: https://www.anthropic.com/research/building-effective-agents
Он прекрасен тем, что определяет, что является агентом, а что не является. С точки зрения авторов поста, агент = система, в которой языковые модели динамически управляют собственными вызовами и инструментами, контролируя выполнение какой-то задачи.
Авторы утверждают, что для большинства случаев агенты не нужны: чем проще решение, тем лучше. С чем я полностью согласен👏
Основное содержание поста — примитивы и паттерны оркестрирования языковых моделей без агентов. Основной примитив: улучшенная языковая модель, которая имеет доступ к инструментам, поиску и памяти. Этот примитив может быть реализован по-разному, например через конечное число последовательных вызовов языковой модели.
🔹Паттерн 1: цепочка промптов
Если задача разбивается на несколько последовательных подзадач, их можно решать отдельными вызовами языковой модели. Например, если вы хотите сделать систему, пишущую книги, вы сначала делаете вызов для генерации названия книги, потом отдельные вызовы для краткого описания, содержания, выжимок глав и непосредственно самих глав.
🔹Паттерн 2: маршрутизация
Если ваше приложение разбивается на несколько возможных параллельных путей, то стоит сделать классификатор, который будет определять нужный путь, и специализированные промпты под каждый из путей. Например, если вы делаете чатбот с несколькими независимыми функциями (рекомендация фильмов, ответы на вопросы по фильмам, чат на общие темы), то стоит использовать этот паттерн. В древних чатботах часто был детектор интентов, который делал ровно это👴
🔹Паттерн 3: параллелизация
Если задача разбивается на несколько параллельных подзадач, то стоит их и вызывать параллельно. Например, если вам нужно извлечь огромный JSON из текста или переписки, возможно вам стоит извлекать его по кусочкам. Отличие от маршрутизации в том, что в ней нам нужна была только одна ветка, а тут нам нужны результаты всех вызовов.
🔹Паттерн 4: ведущий-ведомый😭
То же самое, что и параллелизация, только с динамическим количеством и содержанием подзадач. Например, так можно делать агрегацию результатов поиска.
🔹Паттерн 5: цикл оценки
Если есть чёткие критерии оценки качества выполнения задачи, то можно одной языковой моделью решать задачу, а другой — оценивать качество решения и давать обратную связь. И делать это в цикле. Это может работать много где, например в переводе текстов.
Ну и наконец последний паттерн — агенты, которые совершают действия в определенной среде, получают от среды обратную связь, и снова совершают действия.
Мне в разных местах в разное время пришлось использовать первые 3 паттерна. При этом тогда я не формулировал их как отдельные паттерны. Это не какие-то абстрактные штуки, это кристаллизация того, как удобно и просто строить системы (как и любые другие паттерны проектирования).
Он прекрасен тем, что определяет, что является агентом, а что не является. С точки зрения авторов поста, агент = система, в которой языковые модели динамически управляют собственными вызовами и инструментами, контролируя выполнение какой-то задачи.
Авторы утверждают, что для большинства случаев агенты не нужны: чем проще решение, тем лучше. С чем я полностью согласен
Основное содержание поста — примитивы и паттерны оркестрирования языковых моделей без агентов. Основной примитив: улучшенная языковая модель, которая имеет доступ к инструментам, поиску и памяти. Этот примитив может быть реализован по-разному, например через конечное число последовательных вызовов языковой модели.
🔹Паттерн 1: цепочка промптов
Если задача разбивается на несколько последовательных подзадач, их можно решать отдельными вызовами языковой модели. Например, если вы хотите сделать систему, пишущую книги, вы сначала делаете вызов для генерации названия книги, потом отдельные вызовы для краткого описания, содержания, выжимок глав и непосредственно самих глав.
🔹Паттерн 2: маршрутизация
Если ваше приложение разбивается на несколько возможных параллельных путей, то стоит сделать классификатор, который будет определять нужный путь, и специализированные промпты под каждый из путей. Например, если вы делаете чатбот с несколькими независимыми функциями (рекомендация фильмов, ответы на вопросы по фильмам, чат на общие темы), то стоит использовать этот паттерн. В древних чатботах часто был детектор интентов, который делал ровно это
🔹Паттерн 3: параллелизация
Если задача разбивается на несколько параллельных подзадач, то стоит их и вызывать параллельно. Например, если вам нужно извлечь огромный JSON из текста или переписки, возможно вам стоит извлекать его по кусочкам. Отличие от маршрутизации в том, что в ней нам нужна была только одна ветка, а тут нам нужны результаты всех вызовов.
🔹Паттерн 4: ведущий-ведомый
То же самое, что и параллелизация, только с динамическим количеством и содержанием подзадач. Например, так можно делать агрегацию результатов поиска.
🔹Паттерн 5: цикл оценки
Если есть чёткие критерии оценки качества выполнения задачи, то можно одной языковой моделью решать задачу, а другой — оценивать качество решения и давать обратную связь. И делать это в цикле. Это может работать много где, например в переводе текстов.
Ну и наконец последний паттерн — агенты, которые совершают действия в определенной среде, получают от среды обратную связь, и снова совершают действия.
Мне в разных местах в разное время пришлось использовать первые 3 паттерна. При этом тогда я не формулировал их как отдельные паттерны. Это не какие-то абстрактные штуки, это кристаллизация того, как удобно и просто строить системы (как и любые другие паттерны проектирования).
Please open Telegram to view this post
VIEW IN TELEGRAM
Я тут почитывал https://situational-awareness.ai/, и очень мне приглянулась идея автономного агента-учёного.
Уверен, что таких проектов навалом на Гитхабе, но имхо без трёх вещей это не будет работать:
1) Инструмент для поиска по Arxiv и другим научным библиотекам. Причём нормальный, который может возвращать полные тексты, желательно с картинками.
2) Инструмент, эмулирующий файловую систему и её менеджмент.
3) Инструмент, позволяющий эффективно читать и редактировать текстовые файлы. Такой себе vim для LLM, который не жрал бы тонны токенов.
Под "инструментами" я понимаю нормальные API, доступные для вызова моделями.
Я завтра подробно подробно поищу все 3 штуки, но может быть кто-то что-то уже видел?
Уверен, что таких проектов навалом на Гитхабе, но имхо без трёх вещей это не будет работать:
1) Инструмент для поиска по Arxiv и другим научным библиотекам. Причём нормальный, который может возвращать полные тексты, желательно с картинками.
2) Инструмент, эмулирующий файловую систему и её менеджмент.
3) Инструмент, позволяющий эффективно читать и редактировать текстовые файлы. Такой себе vim для LLM, который не жрал бы тонны токенов.
Под "инструментами" я понимаю нормальные API, доступные для вызова моделями.
Я завтра подробно подробно поищу все 3 штуки, но может быть кто-то что-то уже видел?
Что нового я узнал за день?
— Во-первых, MCP и совместимые с ним сервера. В том числе ArXiv сервер, но мне не очень нравится конкретно эта реализация, там нельзя выбирать порядок сортировки результатов поиска, например. Но сам список в целом сойдёт как библиотека инструментов.
— Во-вторых, smolagents (агентский фреймворк от HF) и их подход к инструментам, которые можно автоматически заливать как Spaces на HF. И наоборот, использовать существующие Spaces как инструменты. Ещё прикольно, что основной подход в нём не function calling, а генерация кода с инструментами. Это, в частности, позволяет не завязываться на конкретную реализацию вызова функций. В качестве защищённого интерпретатора Питона они предлагают E2B. До этого я пользовался только Terrarium от Cohere.
— В-третьих, я пока не нашёл адекватной реализации инструмента файловой системы и редактора файлов, но я пока и недостаточно хорошо искал. Попробую воспроизвести или найти воспроизведение str_replace_editor из спеки Anthropic.
— В-четвёртых, всем спасибо за предложения. Часть я уже упомянул выше. findpapers мне пригодился как место, где можно подсмотреть код. storm имхо бесполезен.
Вывод пока такой: открытые инструменты довольно дерьмовы. А если делать свои — то проще всего делать аннотированные функции и потом экспортировать их в любой протокол или фреймворк. Что я и начал делать тут.
— Во-первых, MCP и совместимые с ним сервера. В том числе ArXiv сервер, но мне не очень нравится конкретно эта реализация, там нельзя выбирать порядок сортировки результатов поиска, например. Но сам список в целом сойдёт как библиотека инструментов.
— Во-вторых, smolagents (агентский фреймворк от HF) и их подход к инструментам, которые можно автоматически заливать как Spaces на HF. И наоборот, использовать существующие Spaces как инструменты. Ещё прикольно, что основной подход в нём не function calling, а генерация кода с инструментами. Это, в частности, позволяет не завязываться на конкретную реализацию вызова функций. В качестве защищённого интерпретатора Питона они предлагают E2B. До этого я пользовался только Terrarium от Cohere.
— В-третьих, я пока не нашёл адекватной реализации инструмента файловой системы и редактора файлов, но я пока и недостаточно хорошо искал. Попробую воспроизвести или найти воспроизведение str_replace_editor из спеки Anthropic.
— В-четвёртых, всем спасибо за предложения. Часть я уже упомянул выше. findpapers мне пригодился как место, где можно подсмотреть код. storm имхо бесполезен.
Вывод пока такой: открытые инструменты довольно дерьмовы. А если делать свои — то проще всего делать аннотированные функции и потом экспортировать их в любой протокол или фреймворк. Что я и начал делать тут.
Немножко про агента и инструменты, которые я писал последние пару дней.
Поиск по ArXiv. Есть публичное API, есть готовая библиотка. Подводные камни:
- Есть значительный кусок функциональности, который не поддерживается во всех популярных реализациях: фильтр по датам. Более того, в официальном руководстве к API он... неправильно описан! Если вы выполните запрос из руководства, то увидите, что фильтр там тупо не работает! В реальности это должен быть не отдельный GET параметр, это должна быть часть запроса, что я выяснил только из группы с обсуждением.
- Я до сих пор не до конца понимаю, как работает поиск без явного указания полей. Это как будто бы нигде нормально не описано.
Скачивание и парсинг PDF. И если со скачиванием вопросов нет, то с парсингом всё до сих пор очень-очень больно. Есть pypdf, который с извлечением текста из архивовских pdfок кое-как справляется, но получается просто текст без структуры. И есть marker, который справляется очень даже элитно и выдаёт нормальный Markdown + картинки, но который по-хорошему требует отдельного GPU сервака. На CPU ждать по минуте не очень хочется, да и зависимости там сейчас конфликтуют с smolagents. Чего-то посередине я пока не нашёл.
Эмуляция bash. Я взял спеку Anthropic, запихнул её в Соннет и сказал, чтобы он написал код с исполнением через Docker. Пока что работает безотказно, вообще никаких проблем не было. Более того, иногда агент полнейшую дичь умудряется вытворять с этим инструментом.
Сам агент. Сначала я тестировал всё с Соннетом. Когда за 3 дня насчиталось 30$, я понял, что так продолжать нельзя. Сейчас всё пытаюсь делать с gpt-4o-mini, и это реально больно. Зато если уж с ней всё работает, то с нормальными моделями получаются вообще чудеса. Тестирую на простом запросе про свою же статью.
Меня не очень интересуют хардкодные реализациии типа storm и AgentLaboratory. Хочется всё сделать в рамках базового CodeAct, запихивая всю сложность в инструменты и подчинённых агентов.
Сейчас я пишу str_replace_editor из той же спеки, что и bash.
Поиск по ArXiv. Есть публичное API, есть готовая библиотка. Подводные камни:
- Есть значительный кусок функциональности, который не поддерживается во всех популярных реализациях: фильтр по датам. Более того, в официальном руководстве к API он... неправильно описан! Если вы выполните запрос из руководства, то увидите, что фильтр там тупо не работает! В реальности это должен быть не отдельный GET параметр, это должна быть часть запроса, что я выяснил только из группы с обсуждением.
- Я до сих пор не до конца понимаю, как работает поиск без явного указания полей. Это как будто бы нигде нормально не описано.
Скачивание и парсинг PDF. И если со скачиванием вопросов нет, то с парсингом всё до сих пор очень-очень больно. Есть pypdf, который с извлечением текста из архивовских pdfок кое-как справляется, но получается просто текст без структуры. И есть marker, который справляется очень даже элитно и выдаёт нормальный Markdown + картинки, но который по-хорошему требует отдельного GPU сервака. На CPU ждать по минуте не очень хочется, да и зависимости там сейчас конфликтуют с smolagents. Чего-то посередине я пока не нашёл.
Эмуляция bash. Я взял спеку Anthropic, запихнул её в Соннет и сказал, чтобы он написал код с исполнением через Docker. Пока что работает безотказно, вообще никаких проблем не было. Более того, иногда агент полнейшую дичь умудряется вытворять с этим инструментом.
Сам агент. Сначала я тестировал всё с Соннетом. Когда за 3 дня насчиталось 30$, я понял, что так продолжать нельзя. Сейчас всё пытаюсь делать с gpt-4o-mini, и это реально больно. Зато если уж с ней всё работает, то с нормальными моделями получаются вообще чудеса. Тестирую на простом запросе про свою же статью.
Меня не очень интересуют хардкодные реализациии типа storm и AgentLaboratory. Хочется всё сделать в рамках базового CodeAct, запихивая всю сложность в инструменты и подчинённых агентов.
Сейчас я пишу str_replace_editor из той же спеки, что и bash.
smolagents — очень сырая библиотека. Косяки, которые я успел обнаружить:
- Захардкоженный max_tokens=1500 (issue).
- До 1.2 был неправильное стоп-слово для CodeAct (<end_action> вместо <end_code>).
- Кривое отображение плана в CodeAct начиная с 1.2.
- Частые падения из-за багов в коде отображения в консоли.
- Нет поддержки сложных типов. Tuple[int, int], например.
Но в ней есть один очень весомый плюс: она легко читается и понимается. Там не так много кода и не так много абстракций, в случае чего можно спокойно разбираться и патчить.
- Захардкоженный max_tokens=1500 (issue).
- До 1.2 был неправильное стоп-слово для CodeAct (<end_action> вместо <end_code>).
- Кривое отображение плана в CodeAct начиная с 1.2.
- Частые падения из-за багов в коде отображения в консоли.
- Нет поддержки сложных типов. Tuple[int, int], например.
Но в ней есть один очень весомый плюс: она легко читается и понимается. Там не так много кода и не так много абстракций, в случае чего можно спокойно разбираться и патчить.
На скриншоте один из тестовых вопросов, которые я использую.
Вопрос, очевидно, не совсем серьёзный, но хотя бы заставляет агента попотеть, даже на базе Соннета.
Я всё ещё борюсь за получение нормального лога/отчёта (mind.txt), в комменты скину только final.txt с одного из прогонов.
Что интересно, есть две статьи, которые регулярно всплывали за пару десятков итераций:
Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement
https://arxiv.org/abs/2410.04444
OS-Copilot: Towards Generalist Computer Agents with Self-Improvement
https://arxiv.org/abs/2402.07456
Разбор первой можно найти тут: https://www.group-telegram.com/gonzo_ML/2964
Про вторую я тоже уже слышал, но не читал.
Вопрос, очевидно, не совсем серьёзный, но хотя бы заставляет агента попотеть, даже на базе Соннета.
Я всё ещё борюсь за получение нормального лога/отчёта (mind.txt), в комменты скину только final.txt с одного из прогонов.
Что интересно, есть две статьи, которые регулярно всплывали за пару десятков итераций:
Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement
https://arxiv.org/abs/2410.04444
OS-Copilot: Towards Generalist Computer Agents with Self-Improvement
https://arxiv.org/abs/2402.07456
Разбор первой можно найти тут: https://www.group-telegram.com/gonzo_ML/2964
Про вторую я тоже уже слышал, но не читал.
На этом канале до сих пор не было рекламы, и есть ощущение, что и не будет, хотя меня стабильно раз в неделю о ней спрашивают. Рекламу для России сложно размещать: по-хорошему нужна явная регистрация рекламы в ОРД, а после 10к подписчиков — регистрация канала в другом реестре, и вмазываться в это всё я точно не хочу. Причём не очень понятно, где границы этого. Как определяется, что реклама "направлена на потребителя из России"?
Так что остаётся только реклама не для России, и из-за моего резиденства (Нидерланды) только не для лиц под санкциями. И я сразу зафиксирую ценник: 600€ за пост переводом в пределах ЕС, в пределах России, или криптой. И только с маркировкой.
Сомневаюсь, что таковые лица найдутся, поэтому можете наслаждаться контентом без рекламы 🥰
Так что остаётся только реклама не для России, и из-за моего резиденства (Нидерланды) только не для лиц под санкциями. И я сразу зафиксирую ценник: 600€ за пост переводом в пределах ЕС, в пределах России, или криптой. И только с маркировкой.
Сомневаюсь, что таковые лица найдутся, поэтому можете наслаждаться контентом без рекламы 🥰
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья с эпиграфом и буквицами 😎
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Техножрица 👩💻👩🏫👩🔧
Please open Telegram to view this post
VIEW IN TELEGRAM