VAR: Image Generation via Next-Scale Prediction (by Bytedance)
Вы наверняка слышали про авторегрессионный подход к генерации изображений (imageGPT, Dalle-1). Но у этих методов было очень большое ограничение — картиночные токены приходилось "выпрямлять" в 1D последовательность, которая становилась слишком длинной. Поэтому они работали плохо и медленно, уступив место диффузиям.
Авторы VAR предложили мозговзрывательный способ генерировать изображения при помощи GPT без необходимости делать это неприятное "выпрямление" — вместо авторегрессии по пикселям\токенам они делают "next-scale prediction", то есть предсказывают сразу всю матрицу VQVAE токенов за один forward pass. Теперь один шаг авторегрессии — это шаг увеличения разрешения (см. картинку). К моему удивлению, для этого потребовалось совсем немного модификаций оригинальной GPT-2 архитектуры (текстовой).
Такой подход работает просто молниеносно, а законы масштабирования сильно лучше, чем у диффузий. По метрикам VAR бьёт всех на class-conditional датасетах (генерации по тексту пока нет, но над этим уже работают). А тем временем весь код и веса уже в открытом доступе.
P.S. Думаю, что это один из самых перспективных методов генерации изображений (и видео?) на данный момент.
VAR: Image Generation via Next-Scale Prediction (by Bytedance)
Вы наверняка слышали про авторегрессионный подход к генерации изображений (imageGPT, Dalle-1). Но у этих методов было очень большое ограничение — картиночные токены приходилось "выпрямлять" в 1D последовательность, которая становилась слишком длинной. Поэтому они работали плохо и медленно, уступив место диффузиям.
Авторы VAR предложили мозговзрывательный способ генерировать изображения при помощи GPT без необходимости делать это неприятное "выпрямление" — вместо авторегрессии по пикселям\токенам они делают "next-scale prediction", то есть предсказывают сразу всю матрицу VQVAE токенов за один forward pass. Теперь один шаг авторегрессии — это шаг увеличения разрешения (см. картинку). К моему удивлению, для этого потребовалось совсем немного модификаций оригинальной GPT-2 архитектуры (текстовой).
Такой подход работает просто молниеносно, а законы масштабирования сильно лучше, чем у диффузий. По метрикам VAR бьёт всех на class-conditional датасетах (генерации по тексту пока нет, но над этим уже работают). А тем временем весь код и веса уже в открытом доступе.
P.S. Думаю, что это один из самых перспективных методов генерации изображений (и видео?) на данный момент.
These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations.
from sg