Telegram Group & Telegram Channel
⚡️SD3-Turbo: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation

Вслед за Stable Diffusion 3 мои друзья опуликовали препринт о дистилляции SD3 в 4-шага, сохраняя качество.

Новый метод - Latent Adversarial Diffusion Distillation (LADD), который похож на ADD (был пост про него), но с рядом отличий:

↪️ И учитель и студент тут на архитектуре SD3 на базе трансформеров. Самая большая и самая лучшая модель - 8B параметров.

↪️ Вместо DINOv2 дискриминатора, работающего на RGB пикселях, в этой статье предлагают все же вернуться к дискриминатору в latent space, чтобы работало быстрее и жрало меньше памяти.

↪️ В качестве дискриминатора берут копию учителя (то есть дискриминатор тренировался не дискриминативно, как в случае DINO, а генеративно). После каждого attention блока добавляют голову дискриминатора с 2D conv слоями, классифицирующую real/fake. Таким образом дискриминатор смотрит не только на финалный результат, но и на все промежуточные фичи, что усиливает тренировочный сигнал.

↪️ Тренят на картинках с разным aspect ratio, а не только на квадратах 1:1.

↪️Убрали  L2 reconstruction loss между выходами Учителя и Студента. Говорят, что тупо дискриминатора достаточно, если умно выбрать распределение семплирования шагов t.

↪️ Во время трейна более часто сеплируют t с большим шумом, чтобы студент лучше учился генерить глобальную структуру объектов.

↪️ Дистиллируют на синтетических данных, которые сгенерил учитель, а не на фото из датасета, как это было в ADD.

Еще из прикольного показали, что DPO-LoRA тюнинг хорошо так добрасывает в качество генераций студента.

Итого, получаем SD3-Turbo модель, которая за 4 шага выдает красивые картинки. Судя по небольшому Human Eval, который авторы провели всего на 128 промптах, по image quality студент сравним с учителем. А вот prompt alignment у студента хромает, что в целом ожидаемо.

Ещё показали, что SD3-Turbo лучше чем Midjourney 6 и по качеству и по prompt alignment, что удивляет 🫥. Ждем веса, чтобы провести reality check!

Статья

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2493
Create:
Last Update:

⚡️SD3-Turbo: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation

Вслед за Stable Diffusion 3 мои друзья опуликовали препринт о дистилляции SD3 в 4-шага, сохраняя качество.

Новый метод - Latent Adversarial Diffusion Distillation (LADD), который похож на ADD (был пост про него), но с рядом отличий:

↪️ И учитель и студент тут на архитектуре SD3 на базе трансформеров. Самая большая и самая лучшая модель - 8B параметров.

↪️ Вместо DINOv2 дискриминатора, работающего на RGB пикселях, в этой статье предлагают все же вернуться к дискриминатору в latent space, чтобы работало быстрее и жрало меньше памяти.

↪️ В качестве дискриминатора берут копию учителя (то есть дискриминатор тренировался не дискриминативно, как в случае DINO, а генеративно). После каждого attention блока добавляют голову дискриминатора с 2D conv слоями, классифицирующую real/fake. Таким образом дискриминатор смотрит не только на финалный результат, но и на все промежуточные фичи, что усиливает тренировочный сигнал.

↪️ Тренят на картинках с разным aspect ratio, а не только на квадратах 1:1.

↪️Убрали  L2 reconstruction loss между выходами Учителя и Студента. Говорят, что тупо дискриминатора достаточно, если умно выбрать распределение семплирования шагов t.

↪️ Во время трейна более часто сеплируют t с большим шумом, чтобы студент лучше учился генерить глобальную структуру объектов.

↪️ Дистиллируют на синтетических данных, которые сгенерил учитель, а не на фото из датасета, как это было в ADD.

Еще из прикольного показали, что DPO-LoRA тюнинг хорошо так добрасывает в качество генераций студента.

Итого, получаем SD3-Turbo модель, которая за 4 шага выдает красивые картинки. Судя по небольшому Human Eval, который авторы провели всего на 128 промптах, по image quality студент сравним с учителем. А вот prompt alignment у студента хромает, что в целом ожидаемо.

Ещё показали, что SD3-Turbo лучше чем Midjourney 6 и по качеству и по prompt alignment, что удивляет 🫥. Ждем веса, чтобы провести reality check!

Статья

@ai_newz

BY эйай ньюз






Share with your friend now:
group-telegram.com/ai_newz/2493

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching.
from sg


Telegram эйай ньюз
FROM American