Notice: file_put_contents(): Write of 5531 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 13723 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
КНИЖНАЯ ИНДУСТРИЯ | Telegram Webview: bookindustry/7049 -
Telegram Group & Telegram Channel
Как меняются и на чем учатся рекомендательные системы медиасервисов

С каждым годом рекомендательные алгоритмы работают все лучше: они накапливают знания о пользователях и могут лучше угадывать, что им предложить. Такие технологии развивают социальные сети, маркетплейсы, онлайн-кинотеатры и книжные сервисы. “Ъ” узнал у участников рынка, откуда берутся данные для рекомендаций, как они обрабатываются и как рекомендательные сервисы будут работать в ближайшем будущем.

Как работают рекомендации

Рекомендательная система — это разновидность системы фильтрации информации. Такие алгоритмы помогают принимать пользователям сервисов решения, например, о том, какой продукт приобрести, какую музыку послушать, какой фильм посмотреть в определенный момент времени. Рекомендации работают по-разному в зависимости от задачи конкретного сервиса.

Так, например, в маркетплейсе рекомендации — это персональный шопинг-ассистент, который предлагает пополнить запасы, находит более подходящий или выгодный товар, говорит руководитель направления рекомендаций Wildberries Максим Пасашков. «Под капотом все выглядит более прозаично: набор алгоритмов машинного обучения предсказывает, что и в какой момент может понадобиться пользователю. Здесь применяется целый спектр технологий: от простейших коллаборативных фильтраций и статистических моделей до глубоких нейронных сетей на последовательностях и графах»,— говорит он.

В музыкальных сервисах рекомендации можно назвать «очень внимательным музыкальным консультантом, который не только экспертен в музыке, звучании и жанрах, но и знает именно вас, ваши вкуса и предпочтения», объясняет руководитель сервиса «Яндекс Музыка» Александра Сагалович. Он одновременно анализирует три важных аспекта: что слушает пользователь, что слушают похожие на него пользователи и саму музыку — ее звучание, ритм, настроение, добавила она.

В целом рекомендации всегда ориентируются на два показателя: личные предпочтения пользователя и пересечение интересов конкретного пользователя с другими, похожими на него, рассказывает представитель «Кинопоиска». «Система рекомендаций не только начинает предлагать вам больше фильмов того жанра, который вы выбираете чаще, но и находит пользователей, которые высоко оценили те же картины, что и вы. Алгоритм рекомендует фильмы и сериалы, которые пользователи, похожие на вас, уже посмотрели и оценили высоко»,— говорят в сервисе.

В книжных сервисах рекомендации позволяют преодолеть «первичный барьер к чтению» — проблему выбора, говорит руководитель сервиса «Яндекс Книги» Виталий Григораш: «Рекомендации помогают найти нужную или подходящую в этот момент книгу, пользователь знает, что будет читать и слушать следующим».

Какие данные используют рекомендации

Виды данных, которые уточняют «цифровые профили» пользователей, зависят от конкретного продукта. Рекомендации в Wildberries, например, работают с использованием данных по кликам, заказам, поисковым запросам и иной информации об активности пользователя на сайте, рассказали в маркетплейсе. В VK рекомендательные алгоритмы строятся на основе анализа десятков и сотен петабайт данных, говорят в холдинге: «Например, в "VK Видео" мы анализируем не только просмотры, лайки, комментарии, но и время просмотра, географию, досматриваемость и другие контекстные данные».

Полную версию статьи читайте на kommersant.ru
Фото: Getty Images
https://www.bookind.ru/events/18812/
#новости



group-telegram.com/bookindustry/7049
Create:
Last Update:

Как меняются и на чем учатся рекомендательные системы медиасервисов

С каждым годом рекомендательные алгоритмы работают все лучше: они накапливают знания о пользователях и могут лучше угадывать, что им предложить. Такие технологии развивают социальные сети, маркетплейсы, онлайн-кинотеатры и книжные сервисы. “Ъ” узнал у участников рынка, откуда берутся данные для рекомендаций, как они обрабатываются и как рекомендательные сервисы будут работать в ближайшем будущем.

Как работают рекомендации

Рекомендательная система — это разновидность системы фильтрации информации. Такие алгоритмы помогают принимать пользователям сервисов решения, например, о том, какой продукт приобрести, какую музыку послушать, какой фильм посмотреть в определенный момент времени. Рекомендации работают по-разному в зависимости от задачи конкретного сервиса.

Так, например, в маркетплейсе рекомендации — это персональный шопинг-ассистент, который предлагает пополнить запасы, находит более подходящий или выгодный товар, говорит руководитель направления рекомендаций Wildberries Максим Пасашков. «Под капотом все выглядит более прозаично: набор алгоритмов машинного обучения предсказывает, что и в какой момент может понадобиться пользователю. Здесь применяется целый спектр технологий: от простейших коллаборативных фильтраций и статистических моделей до глубоких нейронных сетей на последовательностях и графах»,— говорит он.

В музыкальных сервисах рекомендации можно назвать «очень внимательным музыкальным консультантом, который не только экспертен в музыке, звучании и жанрах, но и знает именно вас, ваши вкуса и предпочтения», объясняет руководитель сервиса «Яндекс Музыка» Александра Сагалович. Он одновременно анализирует три важных аспекта: что слушает пользователь, что слушают похожие на него пользователи и саму музыку — ее звучание, ритм, настроение, добавила она.

В целом рекомендации всегда ориентируются на два показателя: личные предпочтения пользователя и пересечение интересов конкретного пользователя с другими, похожими на него, рассказывает представитель «Кинопоиска». «Система рекомендаций не только начинает предлагать вам больше фильмов того жанра, который вы выбираете чаще, но и находит пользователей, которые высоко оценили те же картины, что и вы. Алгоритм рекомендует фильмы и сериалы, которые пользователи, похожие на вас, уже посмотрели и оценили высоко»,— говорят в сервисе.

В книжных сервисах рекомендации позволяют преодолеть «первичный барьер к чтению» — проблему выбора, говорит руководитель сервиса «Яндекс Книги» Виталий Григораш: «Рекомендации помогают найти нужную или подходящую в этот момент книгу, пользователь знает, что будет читать и слушать следующим».

Какие данные используют рекомендации

Виды данных, которые уточняют «цифровые профили» пользователей, зависят от конкретного продукта. Рекомендации в Wildberries, например, работают с использованием данных по кликам, заказам, поисковым запросам и иной информации об активности пользователя на сайте, рассказали в маркетплейсе. В VK рекомендательные алгоритмы строятся на основе анализа десятков и сотен петабайт данных, говорят в холдинге: «Например, в "VK Видео" мы анализируем не только просмотры, лайки, комментарии, но и время просмотра, географию, досматриваемость и другие контекстные данные».

Полную версию статьи читайте на kommersant.ru
Фото: Getty Images
https://www.bookind.ru/events/18812/
#новости

BY КНИЖНАЯ ИНДУСТРИЯ




Share with your friend now:
group-telegram.com/bookindustry/7049

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. "He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted.
from sg


Telegram КНИЖНАЯ ИНДУСТРИЯ
FROM American