Telegram Group & Telegram Channel
# Поиск работы: разбор тестового задания Planetfarms

Дано видео на пол минуты с камеры на капоте радиоуправляемой машинки. Нужно следить за машинкой, которая едет впереди. Координаты этой машинки на первом кадре даны. Видео непростое: камера прыгает, цель пропадает из кадра, вылезает много объектов включая вторую идентичную машинку. Для выполнения надо использовать предобученную модель детекции, Faster-RCNN. Нельзя ничего обучать. Было указано, что задание примерно на пару часов.

Посмотрел видео. Было не очень понятно, сколько на нем нужно трекать эту машинку, поэтому я решил делать, пока не получится отслеживать в течение всего видео.

Я не работал с детекцией, поэтому полез изучать, кто такой Faster-RCNN. Разобравшись попробовал запустить на паре кадров. Сеть принимает на вход изображение, а выдает кучу ббоксов (bounding box, прямоугольники вокруг объектов) для найденных объектов, а так же вероятности, что объект относится к одному из 1000 классов Imagenet. Окей, но надо обрабатывать не изображения, а видео. Пришлось работать с видео как с последовательностью изображений.

Начальная позиция машинки дана, так что ближайший к ней ббокс и нужно трекать. Главная проблема вот в сопоставлении. Есть куча ббоксов на фрейме 1, куча ббоксов на фрейме 2. Нужно определить, какие пары относятся к одним и тем же сущностям.

Очевидно, что два ближайших ббокса это один объект. Близость определяем по евклидовому расстоянию между центрами. Погуглил и оказалось, что я изобрел centroid tracker. Сразу вылезла тонна проблем. Например: машинка подъезжает близко, а потом резко отъезжает. Трекинг "перескакивает" на капот машины с камерой и успешно следит за ним до конца видео. Или машинка подпрыгивает на кочке и трекинг переключается на какое-нибудь дерево. Или когда две машинки подъезжают слишком близко и трекинг "перепрыгивает" на вторую. Наконец, непонятно что делать, когда машинка совсем пропадает из кадра.

Сначала я потюнил параметры модели и подобрал порог отсева ббоксов по вероятностям. Далее отсеял лишние ббоксы грубыми эвристиками. На видео дорога всегда в маленьком прямоугольнике в центре кадра. Обрезал все ббоксы, которые в него не попадают. Отфильтровал все слишком вытянутые в ширину или высоту ббоксы, потому что мы знаем, что машинка такой не бывает. Стало лучше.

Далее изменил метрику расстояния. Надо было учесть, что если ббокс t1 по форме похож на t2, то более вероятно, что это ббоксы одной сущности. Поэтому я стал считать расстояние между векторами из координат верхнего левого и нижнего правого углов, вида (x1, y1, x2, y2). Это учитывает форму ббоксов, расстояние между похожими меньше. Немного помогло.



group-telegram.com/boris_again/1208
Create:
Last Update:

# Поиск работы: разбор тестового задания Planetfarms

Дано видео на пол минуты с камеры на капоте радиоуправляемой машинки. Нужно следить за машинкой, которая едет впереди. Координаты этой машинки на первом кадре даны. Видео непростое: камера прыгает, цель пропадает из кадра, вылезает много объектов включая вторую идентичную машинку. Для выполнения надо использовать предобученную модель детекции, Faster-RCNN. Нельзя ничего обучать. Было указано, что задание примерно на пару часов.

Посмотрел видео. Было не очень понятно, сколько на нем нужно трекать эту машинку, поэтому я решил делать, пока не получится отслеживать в течение всего видео.

Я не работал с детекцией, поэтому полез изучать, кто такой Faster-RCNN. Разобравшись попробовал запустить на паре кадров. Сеть принимает на вход изображение, а выдает кучу ббоксов (bounding box, прямоугольники вокруг объектов) для найденных объектов, а так же вероятности, что объект относится к одному из 1000 классов Imagenet. Окей, но надо обрабатывать не изображения, а видео. Пришлось работать с видео как с последовательностью изображений.

Начальная позиция машинки дана, так что ближайший к ней ббокс и нужно трекать. Главная проблема вот в сопоставлении. Есть куча ббоксов на фрейме 1, куча ббоксов на фрейме 2. Нужно определить, какие пары относятся к одним и тем же сущностям.

Очевидно, что два ближайших ббокса это один объект. Близость определяем по евклидовому расстоянию между центрами. Погуглил и оказалось, что я изобрел centroid tracker. Сразу вылезла тонна проблем. Например: машинка подъезжает близко, а потом резко отъезжает. Трекинг "перескакивает" на капот машины с камерой и успешно следит за ним до конца видео. Или машинка подпрыгивает на кочке и трекинг переключается на какое-нибудь дерево. Или когда две машинки подъезжают слишком близко и трекинг "перепрыгивает" на вторую. Наконец, непонятно что делать, когда машинка совсем пропадает из кадра.

Сначала я потюнил параметры модели и подобрал порог отсева ббоксов по вероятностям. Далее отсеял лишние ббоксы грубыми эвристиками. На видео дорога всегда в маленьком прямоугольнике в центре кадра. Обрезал все ббоксы, которые в него не попадают. Отфильтровал все слишком вытянутые в ширину или высоту ббоксы, потому что мы знаем, что машинка такой не бывает. Стало лучше.

Далее изменил метрику расстояния. Надо было учесть, что если ббокс t1 по форме похож на t2, то более вероятно, что это ббоксы одной сущности. Поэтому я стал считать расстояние между векторами из координат верхнего левого и нижнего правого углов, вида (x1, y1, x2, y2). Это учитывает форму ббоксов, расстояние между похожими меньше. Немного помогло.

BY Борис опять


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/boris_again/1208

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future.
from sg


Telegram Борис опять
FROM American