Notice: file_put_contents(): Write of 10565 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50 Непрерывное математическое образование | Telegram Webview: cme_channel/3996 -
в четверг 7 ноября на семинаре «Глобус» Ольга Починка будет рассказывать о топологической ветке нижегородской школы нелинейных колебаний академика А.А.Андронова
15:40, конференц-зал НМУ
«Наиболее интенсивная и плодотворная деятельность А.А.Андронова как учёного, педагога и организатора развернулась в городе Горьком (ныне Нижний Новгород), куда он в 1931 году вместе с группой талантливых молодых учёных (М.Т.Грехова, В.И.Гапонов, Е.А.Леонтович, А.Г.Любина) переехал на постоянное местожительство. Здесь (вместе с учениками и коллегами) он ввел и детально разработал понятие «грубая система» — система, устойчивая к небольшим изменениям параметров. Полученный А.А.Андроновым и Л.С.Понтрягиным критерий грубости системы дифференциальных уравнений на плоскости по праву считается предвестником “гиперболической революции”, произошедшей в теории динамических систем в 60-х годах 20 века. (…) Аналоги грубых потоков на плоскости, (…) получившие название систем Морса-Смейла, оказались лишь частью многогранного гиперболического мира — это структурно устойчивые системы с конечным числом периодических точек. Как оказалось, титул "простейшие структурно устойчивые системы" совсем не отражает сути происходящего в мире систем Морса-Смейла. На сегодняшний день (благодаря серии работ нижегородско-французского коллектива: Х.Бонатти, В.З.Гринес, Е.Я.Гуревич, Е.В.Жужома, Ф.Лауденбах, В.С.Медведев, О.В.Починка) трудно указать какой-либо топологический эффект, не проявившийся в качестве инварианта такой динамической системы. (…) В начале доклада будет дан краткий обзор истории Горьковской-Нижегородской математической школы и ее вклада в теорию бифуркаций и динамических систем.»
в четверг 7 ноября на семинаре «Глобус» Ольга Починка будет рассказывать о топологической ветке нижегородской школы нелинейных колебаний академика А.А.Андронова
15:40, конференц-зал НМУ
«Наиболее интенсивная и плодотворная деятельность А.А.Андронова как учёного, педагога и организатора развернулась в городе Горьком (ныне Нижний Новгород), куда он в 1931 году вместе с группой талантливых молодых учёных (М.Т.Грехова, В.И.Гапонов, Е.А.Леонтович, А.Г.Любина) переехал на постоянное местожительство. Здесь (вместе с учениками и коллегами) он ввел и детально разработал понятие «грубая система» — система, устойчивая к небольшим изменениям параметров. Полученный А.А.Андроновым и Л.С.Понтрягиным критерий грубости системы дифференциальных уравнений на плоскости по праву считается предвестником “гиперболической революции”, произошедшей в теории динамических систем в 60-х годах 20 века. (…) Аналоги грубых потоков на плоскости, (…) получившие название систем Морса-Смейла, оказались лишь частью многогранного гиперболического мира — это структурно устойчивые системы с конечным числом периодических точек. Как оказалось, титул "простейшие структурно устойчивые системы" совсем не отражает сути происходящего в мире систем Морса-Смейла. На сегодняшний день (благодаря серии работ нижегородско-французского коллектива: Х.Бонатти, В.З.Гринес, Е.Я.Гуревич, Е.В.Жужома, Ф.Лауденбах, В.С.Медведев, О.В.Починка) трудно указать какой-либо топологический эффект, не проявившийся в качестве инварианта такой динамической системы. (…) В начале доклада будет дан краткий обзор истории Горьковской-Нижегородской математической школы и ее вклада в теорию бифуркаций и динамических систем.»
BY Непрерывное математическое образование
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats.
from sg