group-telegram.com/cme_channel/4087
Last Update:
(по ассоциации с предыдущим, или контринтуитивные объемы сечений)
пусть выпуклое тело в R^n центрально симметрично
наивно кажется, что если его объем большой, то и сечение гиперплоскостью через 0 должно быть достаточно большое (что-нибудь в духе «объем пропорционален средней величине сечения»?..)
но если подумать еще, то становится совершенно непонятно, как что-либо такое доказать
в 1956 году Busemann и Petty задали вопрос, верно ли, что если у первого тела (выпуклого центрально симметричного) объем каждого гиперплоского сечения через 0 больше, чем у второго, то объем первого больше объема второго
в 1975 году Larman и Rogers построили контрпример в размерностях начиная с 12 (потом доказали, что до размерности 4 утверждение верно, а начиная с размерности 5 есть контрпримеры)
BY Непрерывное математическое образование
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Share with your friend now:
group-telegram.com/cme_channel/4087