Telegram Group & Telegram Channel
Пельменная математика.

Размышлял я тут по академической надобности об энтропии и ёмкости пространств. И оказался в одном неформальном, алкогольном и, при том, весьма дружелюбном пространстве, на тематическом вечере, посвящённом лепке пельменей из лося. И внезапно сформулировалась задача вполне математическая, но при этом в завлекательно гастрономическом виде.

Итак.

Дана плоская тарелка. Какое максимальное количество одинаковых пельменей можно на неё положить в один слой так, чтобы они не сваливались с тарелки?

Несколько пояснений. Форма тарелки, строго говоря, может быть любой (ну и многомерной, конечно, тоже — лишь бы была ограниченной). Условие «не сваливаться» с тарелки вместе с требованием быть плоской значит следующее: центр пельменя должен находиться внутри тарелки.

Формальная постановка задачи такая: каково максимальное число не пересекающихся шаров данного радиуса можно расположить так, чтобы их центры находились внутри данной области? Собственно говоря, это число и называется ёмкостью области (ну, ёмкостью тарелки).

Аналогично можно поставить вопрос о минимально необходимом количестве пельменей, для того, чтобы полностью скрыть тарелку.

Математически, это значит, что мы хотим узнать минимальное число (возможно пересекающихся) шаров, объединение которых полностью содержит в себе данную область. Это число называют энтропией области.

В случае обычной круглой тарелки (плоской, как в сервизе), я думаю, что этот вопрос имеет ответом гексагональную упаковку. В целом, для сферических областей при достаточно маленьких (относительно тарелки) радиусах пельменей эта задача эквивалентна обычной задаче об упаковке.

Эта задача в общем случае не решена (и, вероятно, никогда не будет). При этом задача важная и ей довольно много занимаются. К примеру в случае размерностей 8 и 24, задачу об упаковке в 2016 году решила Марина Вязовская, за что получила в 2022 Филдсовскую медаль (и кучу других премий).

С энтропией и ёмкостью, особенно для произвольных областей, дела обстоят ещё сложнее. Кое-что можно на русском языке понять из древней статьи В.М. Тихомирова и А.Н. Колмогорова, и из статей, который на неё ссылаются (на матнете их довольно много). Кстати, в помянутой статье есть довольно примечательные отсылки на связь с теорией информации (например, с теоремой Котельникова, она же теорема Найквиста) и на связь с кодами, исправляющими ошибки.

Ну, а в моих «грубых делах» энтропия и ёмкость оказываются важным инструментом для определения роста пространства. И мне, к примеру, оказывается важным в основном сам факт конечности и очень грубые оценки. Но об этом как-нибудь в другой раз.

Ну, а что касается пельменей… Надеюсь, что на мою тарелку положат пельменей никак не меньше числа энтропии. И вообще, ответственно заявляю, что в барах я делом занимаюсь!

UPD: про прогресс задачи об упаковке видео подсказали.
#научпоп



group-telegram.com/forodirchNEWS/2873
Create:
Last Update:

Пельменная математика.

Размышлял я тут по академической надобности об энтропии и ёмкости пространств. И оказался в одном неформальном, алкогольном и, при том, весьма дружелюбном пространстве, на тематическом вечере, посвящённом лепке пельменей из лося. И внезапно сформулировалась задача вполне математическая, но при этом в завлекательно гастрономическом виде.

Итак.

Дана плоская тарелка. Какое максимальное количество одинаковых пельменей можно на неё положить в один слой так, чтобы они не сваливались с тарелки?

Несколько пояснений. Форма тарелки, строго говоря, может быть любой (ну и многомерной, конечно, тоже — лишь бы была ограниченной). Условие «не сваливаться» с тарелки вместе с требованием быть плоской значит следующее: центр пельменя должен находиться внутри тарелки.

Формальная постановка задачи такая: каково максимальное число не пересекающихся шаров данного радиуса можно расположить так, чтобы их центры находились внутри данной области? Собственно говоря, это число и называется ёмкостью области (ну, ёмкостью тарелки).

Аналогично можно поставить вопрос о минимально необходимом количестве пельменей, для того, чтобы полностью скрыть тарелку.

Математически, это значит, что мы хотим узнать минимальное число (возможно пересекающихся) шаров, объединение которых полностью содержит в себе данную область. Это число называют энтропией области.

В случае обычной круглой тарелки (плоской, как в сервизе), я думаю, что этот вопрос имеет ответом гексагональную упаковку. В целом, для сферических областей при достаточно маленьких (относительно тарелки) радиусах пельменей эта задача эквивалентна обычной задаче об упаковке.

Эта задача в общем случае не решена (и, вероятно, никогда не будет). При этом задача важная и ей довольно много занимаются. К примеру в случае размерностей 8 и 24, задачу об упаковке в 2016 году решила Марина Вязовская, за что получила в 2022 Филдсовскую медаль (и кучу других премий).

С энтропией и ёмкостью, особенно для произвольных областей, дела обстоят ещё сложнее. Кое-что можно на русском языке понять из древней статьи В.М. Тихомирова и А.Н. Колмогорова, и из статей, который на неё ссылаются (на матнете их довольно много). Кстати, в помянутой статье есть довольно примечательные отсылки на связь с теорией информации (например, с теоремой Котельникова, она же теорема Найквиста) и на связь с кодами, исправляющими ошибки.

Ну, а в моих «грубых делах» энтропия и ёмкость оказываются важным инструментом для определения роста пространства. И мне, к примеру, оказывается важным в основном сам факт конечности и очень грубые оценки. Но об этом как-нибудь в другой раз.

Ну, а что касается пельменей… Надеюсь, что на мою тарелку положат пельменей никак не меньше числа энтропии. И вообще, ответственно заявляю, что в барах я делом занимаюсь!

UPD: про прогресс задачи об упаковке видео подсказали.
#научпоп

BY Кофейный теоретик




Share with your friend now:
group-telegram.com/forodirchNEWS/2873

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat.
from sg


Telegram Кофейный теоретик
FROM American