Telegram Group & Telegram Channel
Космические вспышки представляют собой мощные выбросы энергии, происходящие в разных уголках Вселенной. Они могут возникать вследствие разнообразных астрофизических процессов, таких как взрывы сверхновых, слияние нейтронных звёзд, гамма-всплески и другие явления. Эти события привлекают внимание учёных благодаря своей экстремальной природе и потенциалу для изучения фундаментальных свойств материи и пространства-времени.

Гамма-всплески (GRB) — одни из мощнейших взрывов во Вселенной. Они происходят в результате коллапса массивной звезды или слияния двух компактных объектов, например, нейтронных звёзд или чёрных дыр. Энергия, выделяемая при этих событиях, может достигать 1.0 × 10^47 джоулей, что эквивалентно всей энергии, излучаемой Солнцем за его жизнь.

Гамма-всплески подразделяются на два основных типа: длиннопериодичные GRB, связанные со смертью массивных звёзд и чаще всего происходящие в молодых галактиках, и короткопериодичные GRB, которые, по предположению, вызываются слиянием компактных объектов и наблюдаются в старых галактических популяциях.

Сверхновые — это катастрофические взрывы, сопровождаемые полным разрушением звезды. Существует несколько типов сверхновых: — Тип Ia, который происходит в двойных системах, где белый карлик аккумулирует вещество от своего компаньона до достижения критической массы, после чего следует термоядерный взрыв. — Тип II, который возникает в результате гравитационного коллапса ядра массивной звезды, когда оно достигает плотности, превосходящей плотность атомного ядра.

Магнитары Магнитары — это особый класс нейтронных звёзд с необычайно сильными магнитными полями 10¹⁴–10¹⁵ гауссов. Для сравнения, магнитное поле Земли составляет приблизительно 0.25–0.65 гаусса. Таким образом, поле в 10¹⁵ гауссов будет в триллионы раз сильнее, чем магнитное поле нашей планеты. Магнитары периодически испускают мощные рентгеновское и гамма-излучения, известные как мягкие гамма-репитеры (SGR) и аномальные рентгеновские пульсары (AXP).

Механизмы, приводящие к появлению гамма-всплесков, ещё не до конца понятны. Одна из гипотез гласит, что длинные GRB связаны с коллапсом массивных звёзд, так называемых гиперновых. При этом образуется быстро вращающаяся чёрная дыра, окружённая аккреционным диском. Энергия выделяется через джеты, направленные вдоль оси вращения чёрной дыры. Короткие GRB, скорее всего, обусловлены слиянием нейтронных звёзд или чёрных дыр.

Для наблюдения космических вспышек применяются разнообразные инструменты и методы. Рентгеновские и гамма-телескопы фиксируют высокоэнергетическое излучение, исходящее от вспышек. Оптические телескопы обнаруживают оптическое послесвечение, появляющееся после вспышки. Радиоинтерферометры изучают радиоизлучение, связанное с остатками вспышек, а нейтринные детекторы регистрируют нейтрино, возникающие в ходе взрыва сверхновой.

Космические вспышки остаются одним из самых захватывающих явлений в астрофизике. Они дают уникальные возможности для исследования экстремальных условий и проверки наших теорий о структуре Вселенной. Продолжительные наблюдения и разработка новых технологий помогут учёным лучше понять природу этих загадочных событий и их роль в эволюции Вселенной.



group-telegram.com/kurilka_gutenberga/3656
Create:
Last Update:

Космические вспышки представляют собой мощные выбросы энергии, происходящие в разных уголках Вселенной. Они могут возникать вследствие разнообразных астрофизических процессов, таких как взрывы сверхновых, слияние нейтронных звёзд, гамма-всплески и другие явления. Эти события привлекают внимание учёных благодаря своей экстремальной природе и потенциалу для изучения фундаментальных свойств материи и пространства-времени.

Гамма-всплески (GRB) — одни из мощнейших взрывов во Вселенной. Они происходят в результате коллапса массивной звезды или слияния двух компактных объектов, например, нейтронных звёзд или чёрных дыр. Энергия, выделяемая при этих событиях, может достигать 1.0 × 10^47 джоулей, что эквивалентно всей энергии, излучаемой Солнцем за его жизнь.

Гамма-всплески подразделяются на два основных типа: длиннопериодичные GRB, связанные со смертью массивных звёзд и чаще всего происходящие в молодых галактиках, и короткопериодичные GRB, которые, по предположению, вызываются слиянием компактных объектов и наблюдаются в старых галактических популяциях.

Сверхновые — это катастрофические взрывы, сопровождаемые полным разрушением звезды. Существует несколько типов сверхновых: — Тип Ia, который происходит в двойных системах, где белый карлик аккумулирует вещество от своего компаньона до достижения критической массы, после чего следует термоядерный взрыв. — Тип II, который возникает в результате гравитационного коллапса ядра массивной звезды, когда оно достигает плотности, превосходящей плотность атомного ядра.

Магнитары Магнитары — это особый класс нейтронных звёзд с необычайно сильными магнитными полями 10¹⁴–10¹⁵ гауссов. Для сравнения, магнитное поле Земли составляет приблизительно 0.25–0.65 гаусса. Таким образом, поле в 10¹⁵ гауссов будет в триллионы раз сильнее, чем магнитное поле нашей планеты. Магнитары периодически испускают мощные рентгеновское и гамма-излучения, известные как мягкие гамма-репитеры (SGR) и аномальные рентгеновские пульсары (AXP).

Механизмы, приводящие к появлению гамма-всплесков, ещё не до конца понятны. Одна из гипотез гласит, что длинные GRB связаны с коллапсом массивных звёзд, так называемых гиперновых. При этом образуется быстро вращающаяся чёрная дыра, окружённая аккреционным диском. Энергия выделяется через джеты, направленные вдоль оси вращения чёрной дыры. Короткие GRB, скорее всего, обусловлены слиянием нейтронных звёзд или чёрных дыр.

Для наблюдения космических вспышек применяются разнообразные инструменты и методы. Рентгеновские и гамма-телескопы фиксируют высокоэнергетическое излучение, исходящее от вспышек. Оптические телескопы обнаруживают оптическое послесвечение, появляющееся после вспышки. Радиоинтерферометры изучают радиоизлучение, связанное с остатками вспышек, а нейтринные детекторы регистрируют нейтрино, возникающие в ходе взрыва сверхновой.

Космические вспышки остаются одним из самых захватывающих явлений в астрофизике. Они дают уникальные возможности для исследования экстремальных условий и проверки наших теорий о структуре Вселенной. Продолжительные наблюдения и разработка новых технологий помогут учёным лучше понять природу этих загадочных событий и их роль в эволюции Вселенной.

BY Курилка Гутенберга | Наука в лекциях




Share with your friend now:
group-telegram.com/kurilka_gutenberga/3656

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform.
from sg


Telegram Курилка Гутенберга | Наука в лекциях
FROM American