Telegram Group & Telegram Channel
Модель глубокой нейронной сети для точного определения растворимости водорода при подземном хранении предложили томские ученые

🧪 Производство водорода постоянно наращивается, вопрос его хранения является одним из актуальных для отрасли. Сейчас он обычно хранится в газообразной или жидкой фазе в наземных резервуарах, активно развивается направление подземного хранения. Как сообщает пресс-служба Томского политехнического университета (ТПУ), исследователи вуза разработали гибридные модели глубокого обучения для прогнозирования растворимости водорода при его подземном хранении. Полученные ими результаты могут способствовать разработке более эффективных стратегий хранения водорода.

🌐 При подземном хранении водорода используются соленые водоносные горизонты и истощенные газовые или нефтяные пласты. Ученые считают опасным потенциальное взаимодействие водорода с остаточными углеводородами в пласте, подземными минералами и микробами: пригодность таких хранилищ для водорода требует детального изучения, говорят исследователи ТПУ. Так, одним из ключевых параметров является растворимость водорода в рассоле, измерение которой – сложный и дорогостоящий процесс. Методы машинного обучения, включая сверхточные нейронные сети (CNN) и сети долгой краткосрочной памяти (LSTM), могут обеспечить точные и надежные прогнозы растворимости, анализируя различные входные параметры и превосходя традиционные методы.

*️⃣ Однако автономные модели глубокого обучения обладают недостатками, например, высокой вычислительной нагрузкой, медленной сходимостью, чувствительностью к выбросам данных. Улучшить прогнозирование показателей растворимости водорода может интеграция методов глубокого обучения с оптимизационными алгоритмами. Такие гибридные модели, объединяющие CNN и LSTM с алгоритмами оптимизации, и были разработаны учеными ТПУ. В перспективе оптимальные модели могут быть использованы для надежного прогнозирования растворимости H2 без непосредственного проведения лабораторных исследований и в целом привести к разработке более эффективных и экономически выгодных методов подземного хранения водорода, уверены исследователи.

#наука #водород
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/neftegazterritory/5116
Create:
Last Update:

Модель глубокой нейронной сети для точного определения растворимости водорода при подземном хранении предложили томские ученые

🧪 Производство водорода постоянно наращивается, вопрос его хранения является одним из актуальных для отрасли. Сейчас он обычно хранится в газообразной или жидкой фазе в наземных резервуарах, активно развивается направление подземного хранения. Как сообщает пресс-служба Томского политехнического университета (ТПУ), исследователи вуза разработали гибридные модели глубокого обучения для прогнозирования растворимости водорода при его подземном хранении. Полученные ими результаты могут способствовать разработке более эффективных стратегий хранения водорода.

🌐 При подземном хранении водорода используются соленые водоносные горизонты и истощенные газовые или нефтяные пласты. Ученые считают опасным потенциальное взаимодействие водорода с остаточными углеводородами в пласте, подземными минералами и микробами: пригодность таких хранилищ для водорода требует детального изучения, говорят исследователи ТПУ. Так, одним из ключевых параметров является растворимость водорода в рассоле, измерение которой – сложный и дорогостоящий процесс. Методы машинного обучения, включая сверхточные нейронные сети (CNN) и сети долгой краткосрочной памяти (LSTM), могут обеспечить точные и надежные прогнозы растворимости, анализируя различные входные параметры и превосходя традиционные методы.

*️⃣ Однако автономные модели глубокого обучения обладают недостатками, например, высокой вычислительной нагрузкой, медленной сходимостью, чувствительностью к выбросам данных. Улучшить прогнозирование показателей растворимости водорода может интеграция методов глубокого обучения с оптимизационными алгоритмами. Такие гибридные модели, объединяющие CNN и LSTM с алгоритмами оптимизации, и были разработаны учеными ТПУ. В перспективе оптимальные модели могут быть использованы для надежного прогнозирования растворимости H2 без непосредственного проведения лабораторных исследований и в целом привести к разработке более эффективных и экономически выгодных методов подземного хранения водорода, уверены исследователи.

#наука #водород

BY Neftegaz Territory




Share with your friend now:
group-telegram.com/neftegazterritory/5116

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30.
from sg


Telegram Neftegaz Territory
FROM American