Telegram Group & Telegram Channel
Почему ризонинг ухудшает генерацию моделей LLM

Источник: Эксперт
Технология цепочек рассуждений (ризонинга) стала прорывом в области создания искусственного интеллекта (ИИ) — за счет нее большие языковые модели (LLM), такие как o1 и DeepSeek, могут решать сложные математические задачи и создавать работающий код. Но эта же технология может быть фактором, который вредит качеству ответов моделей, сообщают исследователи Калифорнийского университета. В своем докладе от 12 февраля они отмечают, что LLM с возможностями ризонинга могут отдавать предпочтения своим рассуждениям и игнорировать информацию о внешней среде. Это приводит к тому, что ИИ бесконечно планирует свои действия, но ничего не делает, принимает самовольные решения или отказывается от задачи из-за стресса, который вызывают его «мысли». Вместе с этим использование обычных LLM без ризонинга может быть почти вдвое дешевле при сопоставимых результатах, утверждают исследователи.

Ризонинг приводит к ошибкам из-за чрезмерно длинных цепочек рассуждений, в которых модель теряет фокус на исходной задаче, накапливая логические несоответствия, пояснил «Эксперту» глава отдела исследований в области ИИ дирекции разработки и развития цифровой платформы Университета 2035 Ярослав Селиверстов. Это может быть связано с ограничениями контекстного окна (максимального числа слов, которые модель может считывать за раз), чрезмерно сложным синтаксисом или недостатком релевантных данных в обучении, что провоцирует «зацикливание» на второстепенных деталях, рассуждает он. Также ризонинг может быть подвержен галлюцинациям, когда модель генерирует правдоподобные, но фактические неверные утверждения, которые затем использует в дальнейших рассуждениях, усугубляя ошибку. Еще одна проблема может быть связана со «смещением» (bias) в данных, на которых обучалась модель, что приводит к предвзятым рассуждениям, добавляет Ярослав Селиверстов.

Ризонинг критичен для задач, требующих многошаговой логики, связанных с математикой, анализом текста, соглашается директор департамента расследований T.Hunter, эксперт рынка НТИ SafeNet («Сейфнет») Игорь Бедеров. Он позволяет моделям «думать вслух», что повышает интерпретируемость решений; также этот функционал полезен для исследователя, который видит машинную логику и может ее менять при составлении промптов. Решить проблемы ризонинга можно за счет качественного написания промптов к модели и тщательной валидации рассуждений и действий, которые она совершает, уверен он.



group-telegram.com/nti2035media/9634
Create:
Last Update:

Почему ризонинг ухудшает генерацию моделей LLM

Источник: Эксперт
Технология цепочек рассуждений (ризонинга) стала прорывом в области создания искусственного интеллекта (ИИ) — за счет нее большие языковые модели (LLM), такие как o1 и DeepSeek, могут решать сложные математические задачи и создавать работающий код. Но эта же технология может быть фактором, который вредит качеству ответов моделей, сообщают исследователи Калифорнийского университета. В своем докладе от 12 февраля они отмечают, что LLM с возможностями ризонинга могут отдавать предпочтения своим рассуждениям и игнорировать информацию о внешней среде. Это приводит к тому, что ИИ бесконечно планирует свои действия, но ничего не делает, принимает самовольные решения или отказывается от задачи из-за стресса, который вызывают его «мысли». Вместе с этим использование обычных LLM без ризонинга может быть почти вдвое дешевле при сопоставимых результатах, утверждают исследователи.

Ризонинг приводит к ошибкам из-за чрезмерно длинных цепочек рассуждений, в которых модель теряет фокус на исходной задаче, накапливая логические несоответствия, пояснил «Эксперту» глава отдела исследований в области ИИ дирекции разработки и развития цифровой платформы Университета 2035 Ярослав Селиверстов. Это может быть связано с ограничениями контекстного окна (максимального числа слов, которые модель может считывать за раз), чрезмерно сложным синтаксисом или недостатком релевантных данных в обучении, что провоцирует «зацикливание» на второстепенных деталях, рассуждает он. Также ризонинг может быть подвержен галлюцинациям, когда модель генерирует правдоподобные, но фактические неверные утверждения, которые затем использует в дальнейших рассуждениях, усугубляя ошибку. Еще одна проблема может быть связана со «смещением» (bias) в данных, на которых обучалась модель, что приводит к предвзятым рассуждениям, добавляет Ярослав Селиверстов.

Ризонинг критичен для задач, требующих многошаговой логики, связанных с математикой, анализом текста, соглашается директор департамента расследований T.Hunter, эксперт рынка НТИ SafeNet («Сейфнет») Игорь Бедеров. Он позволяет моделям «думать вслух», что повышает интерпретируемость решений; также этот функционал полезен для исследователя, который видит машинную логику и может ее менять при составлении промптов. Решить проблемы ризонинга можно за счет качественного написания промптов к модели и тщательной валидации рассуждений и действий, которые она совершает, уверен он.

BY 2035. Новости НТИ




Share with your friend now:
group-telegram.com/nti2035media/9634

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Some privacy experts say Telegram is not secure enough Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website.
from sg


Telegram 2035. Новости НТИ
FROM American