Telegram Group & Telegram Channel
Подборка материалов по статистике: обновление

Я давно составляла и размещала на канале рекомендуемые источники по статистике, однако кое-что устарело, плюс нашла еще классные материалы, так что решила обновить.

Книги
1) Статистика и котики из старой подборки пусть остаются, книга критикуется где-то за излишние упрощения, но для старта все еще неплохо.

2) Медико-биологическая статистика Гланца пусть тоже остается, хотя я сама недолюбливаю эту книгу, по крайней мере перевод на русский язык. В нем много небольших неточностей, например достоверность вместо статистической значимости, плюс переведено только старое издание, в котором нет упоминаний поправок на множественное тестирование FDR. Однако во многих чатах его советуют, поэтому оставляю в подборке.

3) Статистика для всех (Statistics in a nutshell) Сары Бослаф неплохая книга, однако в переводе большинство терминов насильно переведены на русский (иногда довольно неудачно), и плохо, что не дано исходного термина на английском, поскольку гуглить придется все равно так. Читать рекомендую самое свежее издание, благо найти в интернете легко.

4) Анализ данных и статистика в R Ивана Позднякова, что хорошо, автор постоянно обновляет часть по R (особенно по tidyverse) и дополняет часть по статистике, например многомерные методы. Материалы вплоть до обобщенной линейной модели доступны, написано хорошо, в общем рекомендую.

5) Рандомизация и бутстреп: статистический анализ в биологии и экологии с использованием R. В.К. Шитиков, Г.С. Розенберг. Остаются с предыдущей подборки.

Курсы

У меня в старой подборке есть однозначная рекомендация курсов Анатолия Карпова по статистике, однако после длительных дискуссий на тему качества этих курсов, я пересмотрела первую часть (Основы статистики).
Соглашусь, что действительно много неточностей как мелких, так и иногда довольно существенных в этом курсе. Следовательно, сейчас я не могу рекомендовать его, поскольку вышло много бесплатных и более качественных материалов (однако для 2013го года это был хороший продукт, так как русскоязычных курсов по статистике практически не было). Возможно, я сделаю более подробный разбор неточностей, которые я собрала, но пока не классифицировала и не оформила в пост.

Следовательно, рекомендую:
1) Курсы Марины Варфоломеевой: Линейные модели, дисперсионный и регрессионный анализ с использованием R, с еще несколькими курсами можно ознакомиться здесь. Наткнулась на материалы практически случайно, увидела что в других чатах тоже рекомендуют, сама кое-какие идеи оттуда брала для своих лекций (конечно с ссылкой на источник). Очень качественно и подробно разобрано практически все, с чем можно столкнуться в статистике, супер круто, что такие материалы есть в открытом доступе.

2) Курс Data Analysis with R Specialization на курсере, я сама не проходила, но много где советовали, программа очень солидная.

3) Платные курсы от Института биоинформатики и бластима. Ссылки кидать не буду, но они легко гуглятся, если кто-то не найдет, пишите в личку или в комменты. На бластиме я преподавала, как многие тут уже знают, могу ручаться за качество лекций и поддержки ассистентов. Курсы или точнее программы повышения квалификации от института биоинформатики тоже однозначно рекомендую, много общалась с людьми оттуда, делают очень качественный продукт.

Ютуб-каналы

1) StatQuest - отличный канал с короткими, но очень четкими разборами конкретных тем по статистике. У автора забавный стиль изложения, с приколами и всякими фразочками, сам он биоинформатик (а по первому образованию музыкант).
2) TileStats - пожалуй еще лучше чем первый канал (хоть и малоизвестный). Тоже формат коротких видео, где наглядно показывается применение формул, как это выглядит на графике и что означает. Абсолютно незаменим для подготовки собственных лекций, очень удачные идеи по визуализации сложных концептов. Стиль изложения более строгий, без забавных фразочек, но все равно максимально понятно.

Если что-то забыла из хороших материалов, пишите комментарии, буду стараться держать подборку лучших книг и курсов всегда обновленной!

#recommendation



group-telegram.com/stats_for_science/73
Create:
Last Update:

Подборка материалов по статистике: обновление

Я давно составляла и размещала на канале рекомендуемые источники по статистике, однако кое-что устарело, плюс нашла еще классные материалы, так что решила обновить.

Книги
1) Статистика и котики из старой подборки пусть остаются, книга критикуется где-то за излишние упрощения, но для старта все еще неплохо.

2) Медико-биологическая статистика Гланца пусть тоже остается, хотя я сама недолюбливаю эту книгу, по крайней мере перевод на русский язык. В нем много небольших неточностей, например достоверность вместо статистической значимости, плюс переведено только старое издание, в котором нет упоминаний поправок на множественное тестирование FDR. Однако во многих чатах его советуют, поэтому оставляю в подборке.

3) Статистика для всех (Statistics in a nutshell) Сары Бослаф неплохая книга, однако в переводе большинство терминов насильно переведены на русский (иногда довольно неудачно), и плохо, что не дано исходного термина на английском, поскольку гуглить придется все равно так. Читать рекомендую самое свежее издание, благо найти в интернете легко.

4) Анализ данных и статистика в R Ивана Позднякова, что хорошо, автор постоянно обновляет часть по R (особенно по tidyverse) и дополняет часть по статистике, например многомерные методы. Материалы вплоть до обобщенной линейной модели доступны, написано хорошо, в общем рекомендую.

5) Рандомизация и бутстреп: статистический анализ в биологии и экологии с использованием R. В.К. Шитиков, Г.С. Розенберг. Остаются с предыдущей подборки.

Курсы

У меня в старой подборке есть однозначная рекомендация курсов Анатолия Карпова по статистике, однако после длительных дискуссий на тему качества этих курсов, я пересмотрела первую часть (Основы статистики).
Соглашусь, что действительно много неточностей как мелких, так и иногда довольно существенных в этом курсе. Следовательно, сейчас я не могу рекомендовать его, поскольку вышло много бесплатных и более качественных материалов (однако для 2013го года это был хороший продукт, так как русскоязычных курсов по статистике практически не было). Возможно, я сделаю более подробный разбор неточностей, которые я собрала, но пока не классифицировала и не оформила в пост.

Следовательно, рекомендую:
1) Курсы Марины Варфоломеевой: Линейные модели, дисперсионный и регрессионный анализ с использованием R, с еще несколькими курсами можно ознакомиться здесь. Наткнулась на материалы практически случайно, увидела что в других чатах тоже рекомендуют, сама кое-какие идеи оттуда брала для своих лекций (конечно с ссылкой на источник). Очень качественно и подробно разобрано практически все, с чем можно столкнуться в статистике, супер круто, что такие материалы есть в открытом доступе.

2) Курс Data Analysis with R Specialization на курсере, я сама не проходила, но много где советовали, программа очень солидная.

3) Платные курсы от Института биоинформатики и бластима. Ссылки кидать не буду, но они легко гуглятся, если кто-то не найдет, пишите в личку или в комменты. На бластиме я преподавала, как многие тут уже знают, могу ручаться за качество лекций и поддержки ассистентов. Курсы или точнее программы повышения квалификации от института биоинформатики тоже однозначно рекомендую, много общалась с людьми оттуда, делают очень качественный продукт.

Ютуб-каналы

1) StatQuest - отличный канал с короткими, но очень четкими разборами конкретных тем по статистике. У автора забавный стиль изложения, с приколами и всякими фразочками, сам он биоинформатик (а по первому образованию музыкант).
2) TileStats - пожалуй еще лучше чем первый канал (хоть и малоизвестный). Тоже формат коротких видео, где наглядно показывается применение формул, как это выглядит на графике и что означает. Абсолютно незаменим для подготовки собственных лекций, очень удачные идеи по визуализации сложных концептов. Стиль изложения более строгий, без забавных фразочек, но все равно максимально понятно.

Если что-то забыла из хороших материалов, пишите комментарии, буду стараться держать подборку лучших книг и курсов всегда обновленной!

#recommendation

BY Статистика и R в науке и аналитике


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/stats_for_science/73

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. Founder Pavel Durov says tech is meant to set you free Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. For tech stocks, “the main thing is yields,” Essaye said.
from sg


Telegram Статистика и R в науке и аналитике
FROM American